化学学报 ›› 2012, Vol. 70 ›› Issue (17): 1827-1830.DOI: 10.6023/A12030044 上一篇    下一篇

研究论文

基于胆甾相液晶的可调制光子晶体

韩国志a,b, 朱沈b, 吴生蓉b, 庞峰飞b   

  1. a 东南大学分子电子学国家重点实验室 南京 210096;
    b 南京工业大学理学院应用化学系 南京 210009
  • 投稿日期:2012-03-22 发布日期:2012-08-17
  • 通讯作者: 韩国志
  • 基金资助:

    项目受中国博士后基金(No. 20100481084)资助.

Preparation of Tunable Photonic Crystal Based on Cholesteric Liquid Crystal

Han Guozhia,b, Zhu Shenb, Wu Shengrongb, Pang Fengfeib   

  1. a State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China;
    b Department of Applied Chemistry, Nanjing University of Technology, Nanjing 210009, China
  • Received:2012-03-22 Published:2012-08-17
  • Supported by:

    Project supported by China Postdoctoral Foundation (No. 20100481084).

将胆甾相液晶填充进胶体晶体内部空隙, 通过胆甾相液晶与胶体晶体的耦合, 构建了一种新型可调制液晶光子晶体. 填充于胶体晶体内部的胆甾相液晶织构呈现典型的手性近晶相(S)特征. 由于胆甾相液晶具有特定的选择性反射, 当胶体晶体的带隙处于胆甾相液晶的反射波长范围之内, 则随着温度的改变, 胶体晶体的带隙与胆甾相液晶的带隙同时发生蓝移. 在一定温度条件下, 胆甾相液晶的带隙将与胶体晶体的带隙发生耦合, 实现了光子晶体带隙在单峰与双峰之间的可逆切换.

关键词: 胆甾相液晶, 胶体晶体, 可调制, 光子晶体, 双带隙

Via introducing cholesteric liquid crystal into voids of colloidal crystal, a novel tunable photonic colloidal crystal based on coupling of cholesteric liquid crystal (CLC) and colloidal crystal (CC) was prepared. Cholesteric liquid crystal used in this paper was prepared by combining nematic liquid crystal 5CB and the chiral dopant COC (cholesteryl oleyl carbonate), its selective reflection wavelength can be controlled by changing proportion of the mixture, and with temperature rising, blue shift of the selective reflection peak occurred. Firstly, SiO2 colloidal crystal was obtained by deposition method, then cholesteric liquid crystals was filled in voids of colloidal crystal by capillary force with temperature above the clearing point. Under polarized light microscope, the cholesteric liquid crystals in voids of colloidal crystal exhibited typical texture of chiral smectic phase in certain temperature region. Since cholesteric liquid crystal has particular selective reflection,if band gap of colloidal crystal locates in the reflection wavelength region of cholesteric liquid crystal, homodromous shift of band gap of cholesteric liquid crystal and colloidal crystal originating from changing of refraction index of Cholesteric liquid crystal in voids occurred at the same time with temperature changed. But shift rate of band gap of cholesteric liquid crystal was faster than that of colloid crystal. So when temperature was carefully raised from lower limit of working range of cholesteric liquid crystal, band gap of CLC would gradually approach reflection peak of colloid crystal. Under a certain temperature, band gap of colloidal crystal would couple with selective reflection of CLC and form a single peak, reflection intensity increased from an average of 50% to 74%. With the further increase of temperature, peak of selective reflection of CLC exceeded stop band of colloid crystal, the single reflection peak re-splitted into double band. Then reversible transition between single and double stop-band of photonic crystal device was realized.

Key words: cholesteric liquid crystal, colloidal crystal, tunable, photonic crystal, double band gap