化学学报 ›› 2024, Vol. 82 ›› Issue (3): 348-366.DOI: 10.6023/A24010026 上一篇    下一篇

综述

自组装单分子空穴传输层在反式钙钛矿太阳电池的研究进展

刘雪朋, 李博桐, 韩明远, 张先付, 陈建林, 戴松元*()   

  1. 华北电力大学 新能源学院 新型薄膜太阳电池北京市重点实验室 北京 102206
  • 投稿日期:2024-01-22 发布日期:2024-02-18
  • 作者简介:

    刘雪朋, 副教授. 主要从事新型太阳电池中有机光电材料的设计、合成及构效关系探索; 新型薄膜太阳电池中关键材料开发及界面修饰. 现工作于华北电力大学新能源学院. 主要研究方向: 钙钛矿太阳电池.

    戴松元, 教授, “新型薄膜太阳电池”北京市重点实验室主任. 长期从事新型太阳电池的研究, 包括染料敏化太阳电池、钙钛矿太阳电池、量子点太阳电池及其他新兴纳米杂化有机/无机太阳电池的研究; 能源转换材料和储能材料的研究和纳米材料的制备和合成等. 现工作于华北电力大学新能源学院. 主要研究方向: 新型薄膜太阳电池.

  • 基金资助:
    国家重点研发计划(2020YFB1506400); 国家自然科学基金项目(61904053); 国家自然科学基金项目(22279033); “111”项目(B16016); 江苏省碳达峰碳中和科技创新专项资金项目(BE2022026)

Research Progress of Self-assembled Hole-transporting Monolayers in Inverted Perovskite Solar Cells

Xuepeng Liu, Botong Li, Mingyuan Han, Xianfu Zhang, Jianlin Chen, Songyuan Dai()   

  1. North China Electric Power University, School of New Energy, Beijing Key Laboratory of Novel Thin-Film Solar Cells, Beijing 102206, China
  • Received:2024-01-22 Published:2024-02-18
  • Contact: *E-mail: sydai@ncepu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2020YFB1506400); National Natural Science Foundation of China(61904053); National Natural Science Foundation of China(22279033); 111 project(B16016); Special Foundation for Carbon Peak Carbon Neutralization Technology Innovation Program of Jiangsu Province(BE2022026)

空穴传输层在钙钛矿太阳电池(Perovskite solar cell, PSC)中起着抽取和传输钙钛矿层产生的光生空穴、抑制电子回流等重要作用, 是构成高性能器件的重要组成部分. 经典的空穴传输材料, 如2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)等, 空穴迁移率低、价格昂贵等缺点限制了其规模化应用. 近年来, 在反式PSC中自组装单分子层(self-assembled monolayers, SAM)作为空穴传输层广泛应用, 提升了器件性能. SAM分子结构中含有锚定官能团, 可以在衬底上形成单分子薄膜, 有着材料消耗小、无需添加剂、寄生吸收低、能够兼容叠层器件和有利于大面积制造等优点, 已成为PSC领域的研究热点. 本综述结合PSC发展, 按照SAM分子结构中锚定基团的不同, 对近年来基于SAM的空穴传输层的研究进行了分类和归纳, 结合分子骨架变化分析了结构变化对其特性及器件性能的影响. 最后, 对SAM作为空穴传输层的发展做了总结和展望.

关键词: 钙钛矿太阳电池, 空穴传输材料, 自组装单分子层, 光电转换效率, 稳定性

Hole transport layer plays an important role in extracting and transporting photogenerated holes from the perovskite layer and suppressing back electron in Perovskite solar cell (PSC). It is an important component of high-performance devices. Classic hole transport materials, such as 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro- OMeTAD), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), etc., have high prices and low hole mobility, which limit the large-scale application. In recent years, self-assembled monolayers (SAM) have been widely used as hole transport layers in inverted PSC to improve device performance. SAM molecular structure contains anchoring functional groups, which can form a single molecule film on the substrate. It has the advantages of low material consumption, no need for additives, low parasitic absorption, compatibility with tandem devices, and is conducive to large-scale manufacturing. It has become a research hotspot in the field of perovskite solar cells. In the light of the development of PSC, this review classifies and summarizes the recent studies on SAM-based hole transport layers according to the different anchoring groups in the SAM molecular structure, and analyzes the effects of the molecular structure changes on the molecular properties and device performance. Finally, the development of SAM as a hole transport layer is summarized and prospected.

Key words: perovskite solar cell, hole transporting materials, self-assembled monolayers, photoelectric conversion efficiency, stability