化学学报 ›› 2021, Vol. 79 ›› Issue (5): 545-556.DOI: 10.6023/A20120589 上一篇    下一篇

综述

小分子给体/高分子受体型有机太阳能电池研究进展

苗俊辉1, 丁自成1, 刘俊1,*(), 王利祥1   

  1. 1 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
  • 投稿日期:2020-12-30 发布日期:2021-02-23
  • 通讯作者: 刘俊
  • 作者简介:

    苗俊辉, 2015年本科毕业于郑州大学, 2020年在中国科学院长春应用化学研究所获得博士学位, 导师是刘俊研究员. 目前在长春应用化学研究所刘俊研究员课题组开展研究工作, 研究方向是有机太阳能电池的活性层材料开发与性能研究.

    丁自成, 男, 副研究员. 研究方向为有机太阳能电池, 包括石墨烯量子点电极界面材料开发与应用、小分子给体/高分子受体型有机太阳能电池和全高分子太阳能电池活性层形貌调控研究, 迄今发表学术论文30余篇, 主持国家自然科学基金2项.

    刘俊, 男, 中国科学院长春应用化学研究所研究员. 2001年本科毕业于武汉大学, 2007年在长春应用化学研究所获得博士学位, 2007~2012年在德国维尔茨堡大学、美国加州大学洛杉矶分校、美国凯斯西储大学做博士后研究. 2013年加入长春应用化学研究所, 开展独立研究. 2016年获得国家杰出青年科学基金. 研究领域为光电功能高分子和全高分子太阳能电池. 代表性成果为硼氮配位键高分子半导体和小分子半导体.

  • 基金资助:
    项目受国家自然科学基金(21625403); 项目受国家自然科学基金(51873204); 科技部国家重点研究发展项目(2019YFA0705900)

Research Progress in Organic Solar Cells Based on Small Molecule Donors and Polymer Acceptors

Junhui Miao1, Zicheng Ding1, Jun Liu1,*(), Lixiang Wang1   

  1. 1 State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2020-12-30 Published:2021-02-23
  • Contact: Jun Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21625403); National Natural Science Foundation of China(51873204); National Key Research and Development Program of China(2019YFA0705900); Ministry of Science and Technology(MOST)

有机太阳能电池具有低成本、柔性和质量轻等优势, 是一种有应用前景的光伏技术, 受到人们的广泛关注. 有机太阳能电池的光敏活性层通常由p-型有机半导体(包括小分子和高分子)与n-型有机半导体(包括小分子和高分子)共混而成. 小分子给体/高分子受体型有机太阳能电池具有形貌热稳定性优异的特点, 值得深入研究. 本综述旨在总结小分子给体/高分子受体型有机太阳能电池的研究进展, 分别介绍了基于酰亚胺基、氰基和含硼氮配位键(B←N)的高分子受体的活性层材料体系的发展状况. 在器件性能方面, 通过分子设计、相分离形貌调控, 改善了小分子给体/高分子受体的匹配性, 将该类电池的能量转换效率从最初的0.29%提升至目前的9.51%, 为性能的进一步提升总结了经验; 在稳定性方面, 基于该体系形貌热稳定性优异的特点, 开发出高温耐受型有机太阳能电池器件. 最后, 展望了小分子给体/高分子受体型有机太阳能电池的未来发展方向和前景.

关键词: 有机太阳能电池, 小分子给体, 高分子受体, 相分离形貌, 热稳定性

Due to their advantages of low cost, flexibility and light weight, organic solar cells (OSCs) are considered to be a promising photovoltaic technology for practical applications and have received great attentions. The active layers of OSCs are the blends of conjugated small molecule/polymer electron donors and electron acceptors. Before 2013, the most-widely used electron acceptors are fullerene derivatives. Nevertheless, the weak absorption in the visible region, limited electronic tunability, and poor morphological stability hinder their further application in OSCs. Non-fullerene electron acceptors with good light harvesting ability and tunable energy levels have developed rapidly in past few years. Based on the types of electron donor and acceptor materials, non-fullerene OSCs may be classified into four types, including polymer donor/polymer acceptor blend (PD/PA), polymer donor/small molecule acceptor blend (PD/MA), small molecule donor/polymer acceptor blend (MD/PA), and small molecule donor/small molecule acceptor blend (MD/MA). Among various kinds of OSCs, MD/PA-type OSCs possess the excellent morphology stability under thermal stress, which is worthy of further study. Although the advantages of MD/PA-type OSCs, there are still large challenges in their development. The power conversion efficiencies (PCEs) of MD/PA-type OSCs are still much lower than that of other type OSCs, due to the limited material combination of small molecule donors and polymer acceptors and undesirable phase separation morphology of the active layers. In this review, we summarize the research progress of OSCs based on small molecule donors and polymer acceptors, and introduce the active layer material systems from three type polymer acceptors, i.e.the imide group, cyano group and boron-nitrogen coordination bond (B←N) unit based polymer acceptors. Benefiting from the development of both donor and acceptor materials as well as the manipulation of phase-separation morphology in active layers, the good match between small molecule donors and polymer acceptors is achieved. This not only boosts the large improvement in PCE from 0.29% to 9.51%, but also contributes to a high-temperature tolerant photovoltaic device. Finally, we also present an outlook of the future development of high-performance MD/PA-type OSCs.

Key words: organic solar cell, small molecule donor, polymer acceptor, phase-separation morphology, thermal stability