化学学报 ›› 2025, Vol. 83 ›› Issue (10): 1223-1236.DOI: 10.6023/A25060218 上一篇    下一篇

综述

共价有机框架作为质子导体的研究进展

李澄秋, 余嘉俊, 冯霄*()   

  1. 北京理工大学 化学与化工学院 北京 100081
  • 投稿日期:2025-06-14 发布日期:2025-08-28
  • 通讯作者: 冯霄
  • 作者简介:

    李澄秋, 2024年6月获得北京理工大学学士学位, 2024年9月于北京理工大学攻读硕士学位. 现主要从事共价有机框架在质子交换膜燃料电池和质子交换膜电解水中的合成与应用.

    余嘉俊, 2024年6月获得北京理工大学学士学位, 2024年9月于北京理工大学攻读博士学位. 现主要从事共价有机框架在质子交换膜燃料电池中的合成与应用.

    冯霄, 北京理工大学博士生导师, 化学与化工学院教授, 国家级领军人才. 分别于2008年和2013年于北京理工大学材料学院取得本科与博士学位, 攻读博士期间以联合培养博士研究生身份留学于日本分子科学研究所. 2013年就职于北京理工大学化学与化工学院. 主要从事关于共价有机框架材料中物质传输与能源转化研究.

    “中国青年化学家”专辑.

  • 基金资助:
    国家自然科学基金(22575023); 国家自然科学基金(22171022)

Research Progress of Covalent Organic Frameworks as Proton Conductors

Chengqiu Li, Jiajun Yu, Xiao Feng*()   

  1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-06-14 Published:2025-08-28
  • Contact: Xiao Feng
  • About author:

    † These authors contributed equally to this work.

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Natural Science Foundation of China(22575023); National Natural Science Foundation of China(22171022)

共价有机框架(covalent organic frameworks, COFs)凭借其结构可设计性、高比表面积和优异的化学稳定性, 近年来在质子导体领域引起广泛关注. 本综述概述了COFs在本征与非本征质子源体系中的质子传输机制、材料设计策略及相关研究进展, 阐明了Grotthuss机制与Vehicle机制的定义和判定标准. 将电化学阻抗谱、固体核磁、红外光谱等实验手段与密度泛函理论、分子动力学和从头算分子动力学模拟结合, 解析了COFs的微观质子传输机制及其与结构的构效关系. 最后, 本综述分析了COF质子导体在能源领域的应用前景, 并简要探讨了其结构设计、实验表征和理论模拟的发展方向.

关键词: 共价有机框架, 质子导体, 质子传输机制, 分子模拟与表征技术

Covalent organic frameworks (COFs), with their structural tunability, high specific surface area, and excellent chemical stability, have attracted increasing attention in the field of proton conductors in recent years. This review systematically summarizes the research progress of COF-based proton conductors, covering proton transport mechanisms, material design strategies, experimental characterization, theoretical simulation methods, and application prospects. Criteria for distinguishing between the Grotthuss mechanism, which involves proton relaying through a hydrogen-bonding network, and the Vehicle mechanism, which entails diffusion of protonated species, have been clarified based on extensive experimental measurements of activation energies and theoretical simulations of proton transport pathways. In general, an activation energy below approximately 0.4 eV suggests dominance of the Grotthuss mechanism, whereas higher values typically indicate the predominance of the Vehicle mechanism. Proton-conducting materials are commonly categorized into intrinsic and extrinsic systems based on the source of protons. Intrinsic systems construct stable conduction pathways by covalent bonding to anchor sulfonic acid groups, phosphate groups, or nitrogen heterocycles. Extrinsic systems are optimized for proton transport by loading H3PO4, ionic liquids, or polymers using confinement effects. In terms of experimental characterization techniques, electrochemical impedance spectroscopy (EIS) was employed to measure macroscopic conductivity and activation energy. Simultaneously, solid-state nuclear magnetic resonance (ssNMR) was utilized to the local chemical environment of protons, X-ray photoelectron spectroscopy (XPS) for analyzing the charge distribution of functional groups, and infrared spectroscopy for monitoring chemical bond vibrations and transformations. Furthermore, the potential applications of quasi-elastic neutron scattering (QENS) and isotope tracing techniques in other materials were also briefly discussed. Theoretical simulation methods encompass density functional theory (DFT), for calculating electrostatic potential and, combined with transition state search methods, proton migration energy barriers, classical molecular dynamics (MD), for calculating radial distribution function (RDF) and coordination number, and ab initio molecular dynamics (AIMD), for dynamic tracking of proton migration pathways. These methods have collectively revealed the microscopic regulatory mechanism of proton transport through pore geometry, functional group arrangement, and synergistic effects of hydrogen bonding. Finally, this review analyzes the application prospects of COF proton conductors in electrochemical energy conversion devices. We propose that integrated efforts in the design, experimental characterization, and theoretical simulation of COFs are essential for achieving performance optimization and advancing towards practical application, thereby enhancing proton conduction efficiency and material stability. Future research should integrate high-resolution characterization and multi-scale simulation to gain a comprehensive understanding of the proton transport mechanisms in COF materials, thus accelerating the application of COF-based conductors in promising hydrogen energy technologies.

Key words: covalent organic framework, proton conductors, proton transport mechanism, molecular simulation and characterization techniques