化学学报 ›› 2011, Vol. 69 ›› Issue (9): 1060-1064. 上一篇    下一篇

研究论文

Fe3O4@C/Pt复合纳米粒子的原位合成及其催化性质的研究

郭清华,韩三阳,姚建林*,顾仁敖   

  1. (苏州大学材料与化学化工学部 苏州 215123)
  • 投稿日期:2010-08-18 修回日期:2010-12-07 发布日期:2011-01-14
  • 通讯作者: 姚建林 E-mail:jlyao@suda.edu.cn
  • 基金资助:

    铁氧化物/金属核壳结构的表面增强拉曼光谱研究及其应用

In-situ Fabrication of Fe3O4@C/Pt Nanocomposite and Investigation of Its Catalytic Activity

GUO Qing-Hua, HAN San-Yang, YAO Jian-Lin, GU Ren-Ao   

  1. (College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123)
  • Received:2010-08-18 Revised:2010-12-07 Published:2011-01-14
  • Contact: Jianlin Yao E-mail:jlyao@suda.edu.cn

采用水热方法分别合成了Fe3O4磁性内核以及Fe3O4@C粒子. 并原位合成了Fe3O4@C/Pt复合纳米结构, 采用SEM, TEM 红外光谱, Raman光谱等手段进行了相关表征. 研究了纯Pt纳米粒子以及Fe3O4@C/Pt复合纳米结构催化硼氢化钠(NaBH4)还原对硝基苯酚(4-NP)的反应活性, 并利用外加磁场富集的方式对该复合纳米结构催化剂进行回收和循环利用. 研究结果表明Fe3O4@C/Pt复合纳米结构的催化性能较纯Pt纳米粒子高, 这主要由于Fe3O4的协同效应所致, 即Fe3O4和Pt间的电荷转移致使Pt的催化活性提高. 该复合型催化剂可实现回收和循环利用, 其可循环利用次数约为20次.

关键词: 四氧化三铁磁性粒子, 铂, 核壳结构, 催化, 循环利用

Magnetic Fe3O4 and Fe3O4@C core-shell nanostructures were prepared by the hydrothermal method and the Pt nanoparticles was in situ attached on Fe3O4@C to form Fe3O4@C/Pt nanocomposite. The TEM, SEM, FTIR and Raman spectroscopy were employed to characterize the surface morphology and composition. The catalytic activities of pure Pt nanoparticles (2 nm) and Fe3O4@C/Pt on the reaction of the transformation of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 were investigated. The possibility of recycling on the catalyst was explored by applying an external magnetic field. The results revealed that Fe3O4@C/Pt exhibited higher catalytic efficiency than that of pure Pt nanoparticles. It was mainly due to the synergetic effect that occurred at the interface of metals and Fe3O4@C support. The charge transfer from magnetic core to the Pt caused the increase of electron density on Pt and thus improved the reducibility of Fe3O4@C/Pt. The nanocomposite catalyst was recyclable for about 20 times.

Key words: Fe3O4 magnetic nanoparticles, platinum, core-shell structures, catalysis, recycling