[1] (a) Tsuji, J. Transition Metal Reagents and Catalysts, Wiley, New York, 2000;
(b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921;
(c) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317;
(d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258; Angew. Chem. 2008, 120, 264;
(e) Norsikian, S.; Chang, C.-W. Curr. Org. Synth. 2009, 6, 264;
(f) Montserrat, D.; Oscar, P. Acc. Chem. Res. 2010, 43, 312.
(g) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427;
(h) Zhang, W.; Liu, D. In Chiral Ferrocenes in Asymmetric Catalysis:Synthesis and Applications, Eds.:Dai, L.-X., Hou, X.-L., Wiley-VCH, Weinheim, 2010, Chapter 14;
(i) Weaver, J. D.; Recio, A., Ⅲ; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846;
(j) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185;
(k) Trost, B. M. Top. Organomet. Chem. 2013, 44, 1;
(l) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
(m) Wu, Y.; Yang, D.; Long, Y. Chin. J. Org. Chem. 2009, 29, 1522. (吴钰娟, 杨定乔, 龙玉华, 有机化学, 2009, 29, 1522.)
(n) Zheng, N.; Song, W. J. Org. Chem. 2017, 37, 1099. (郑楠, 宋汪泽, 有机化学, 2017, 37, 1099.).
(o) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2017, 75, 655. (于月娜, 徐明华, 化学学报, 2017, 75, 655.)
[2] For recent selected advances, see:(a) Trost, B. M.; Thaisrivongs, D. A.; Hansmann, M. M. Angew. Chem., Int. Ed. 2012, 51, 11522;
(b) Bartlett, M. J.; Turner, C. A.; Harvey, J. E. Org. Lett. 2013, 15, 2430;
(c) Yu, Y.; Yang, X.-F.; Xu, C.-F.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2013, 15, 3880;
(d) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626;
(e) Quan, M.; Butt, N.; Shen, J.; Shen, K.; Liu, D.; Zhang, W. Org. Biomol. Chem. 2013, 11, 7412;
(f) Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570;
(g) Butt, N.; Liu, D.; Zhang, W. Synlett 2014, 615;
(h) Garcia, M. A.; Frey, W.; Peters, R. Organometallics 2014, 33, 1068;
(i) Su, Y.-L.; Li, Y.-H.; Chen, Y.-G.; Han, Z.-Y. Chem. Commun. 2017, 53, 1985;
(j) Saito, A.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed. 2017, 56, 5551;
(k) Tang, H.-M.; Huo, X.-H.; Meng, Q.-H.; Zhang, W.-B. Acta Chim. Sinica 2016, 74, 219. (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
(l) Yang, J.; Li, N.; Zhou, H.; Li, T.; Xie, D.; Li, Z. Chin. J. Org. Chem. 2017, 37, 2078. (杨靖亚, 李娜娜, 周红艳, 李天媛, 谢栋泰, 李政, 有机化学, 2017, 37, 2078.)
[3] For review, see:
(g) Muzart, J. Tetrahedron 2005, 61, 4179;
(b) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. For early works on allylation reactions activated by Lewis acids or Brøsted acid, see:(a) Starý, I.; Stará, I.; Kocovský, P. Tetrahedron Lett. 1993, 34, 179.
(b) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.
(c) Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4877.
(d) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.
[4] For examples using allylic alcohol for AAA reactions, see:(a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314;
(b) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471;
(c) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255;
(d) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776; For another recent notable example for the direct allylation of α-branched aromatic aldehydes with allylic alcohols catalyzed by dual-catalytic strategy, see:
(e) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065;
(f) Zhou, H.; Yang, H.; Xia, C.; Jiang, G. Org. Lett. 2014, 16, 5350;
(g) Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098;
(h) Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G. Org. Lett. 2017, 19, 6148;
(i) Zhang, Z.-H.; Tao, Z.-L.; Arafate, A.; Gong, L.-Z. Acta Chim. Sinica 2017, 75, 1196. (张子競, 陶忠林, 阿拉法特·阿地力, 龚流柱, 化学学报, 2017, 75, 1196.)
(j) Li, B.; Liu, R.; Liang, R.; Jia, Y. Acta Chim. Sinica 2017, 75, 448. (李保乐, 刘人荣, 梁仁校, 贾义霞, 化学学报, 2017, 75, 448.)
[5] (a) Chua, C. J.; Ren, Y.; Baumgartner, T. B. Org. Lett. 2012, 14, 1588;
(b) Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Kung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H. Chem. Sci. 2016, 7, 4044;
(c) Zhan, X.; Wu, Z.; Lin, Y.; Xie, Y.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Chem. Sci. 2016, 7, 4355;
(d) Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y.; Wang, Y. Angew. Chem., Int. Ed. 2017, 56, 11525;
(e) Liu, Q.; Zhao, C.; Tian, G.; Ge, H. RSC Adv. 2018, 8, 805;
(f) Chen, W.-C.; Yuan, Y.; Zhu, Z.-L.; Jiang, Z.-Q.; Su, S.-J.; Liao, L.-S.; Lee, C.-S. Chem. Sci. 2018, 9, 4062.
[6] (a) Lin, L.-C.; Yen, H.-J.; Chen, C.-J.; Tsai, C.-L.; Liou, G.-S. Chem. Commun. 2014, 50, 13917;
(b) Tang, M.-C.; Tsang, D. P.-K.; Wong, Y.-C.; Chan, M.-Y.; Wong, K. M.-C.; Yam, V. W.-W. J. Am. Chem. Soc. 2014, 136, 17861;
(c) Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Voorhis, T. V.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908.
[7] (a) Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459;
(b) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550;
(c) Esteban, S. G.; de la Cruz, P.; Aljarilla, A.; Arellano, L. M.; Langa, F. Org. Lett. 2011, 13, 5326;
(d) Baheti, A.; Singh, P.; Lee, C.-P.; Thomas, K. R. J.; Ho, K.-C. J. Org. Chem. 2011, 76, 4910;
(e) Zhang, J.; Wu, G.; He, C.; Deng, D.; Li, Y. J. Mater. Chem. 2011, 21, 3768;
(f) Aljrilla, A.; López-Arroyo, L.; de la Cruz, P.; Oswald, F.; Meyer, T. B.; Langa, F. Org. Lett. 2012, 14, 5732;
(g) Tan, Y.; Liang, M.; Lu, Z.; Zheng, Y.; Tong, X.; Sun, Z.; Xue, S. Org. Lett. 2014, 16, 3978;
(h) Li, Z.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, K.-Y. J. Am. Chem. Soc. 2016, 138, 11833;
(i) Chiykowski, V. A.; Lam, B.; Du, C.; Berlinguette, C. P. Chem. Commun. 2017, 53, 2367. |