化学学报 ›› 2021, Vol. 79 ›› Issue (3): 238-256.DOI: 10.6023/A20090441 上一篇 下一篇
综述
李佳欣a, 李蓓b, 王纪康a, 何蕾a,*(), 赵宇飞a,*()
投稿日期:
2020-09-23
发布日期:
2020-12-24
通讯作者:
何蕾, 赵宇飞
作者简介:
李佳欣, 北京化工大学在读博士, 2017 年 6 月于北京化工大学理学院应用化学专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室宋宇飞教授课题组, 主要研究方向为水滑石光催化精细化学品的合成. |
李蓓博士, 2015年6月于北京化工大学化工资源有效利用国家重点实验室卫敏课题组获得硕士学位, 随后加入澳大利亚昆士兰大学生物工程与纳米技术国家研究所Zhi Ping (Gordon) Xu课题组, 并于2019年9月获得博士学位. 主要研究方向为多功能纳米材料的生物医学应用. |
何蕾博士, 北京化工大学副教授、硕士生导师. 主要致力于疾病相关生物靶分子的药物设计、仿生光电催化等交叉领域的研究. |
赵宇飞, 北京化工大学化学学院教授, 博士生导师. 入选中国科协“青年人才托举工程”计划, 2019年度国家自然科学基金优秀青年科学基金获得者. |
基金资助:
Jiaxin Lia, Bei Lib, Jikang Wanga, Lei Hea(), Yufei Zhaoa()
Received:
2020-09-23
Published:
2020-12-24
Contact:
Lei He, Yufei Zhao
About author:
Supported by:
文章分享
生物医学涉及到人类健康相关的多个领域: 临床医疗、公共卫生、医药研发等多个方面. 其中在医药研发领域, 基于插层结构的纳米药物载体的研发已经成为重要发展方向之一. 水滑石(LDHs)及其衍生物具有成本低、合成简单、载药高效、细胞膜透过率高、生物相容性好、易降解等优点, 在生物医药领域得到了广泛关注. 本文主要介绍了LDHs及其衍生物的制备方法, 以及在抗菌治疗、生物成像和肿瘤治疗等方面的应用. 此外, 还简述了LDHs材料的规模化生产方法和现状, 进一步分析了LDHs的实际应用前景. 最后, 对LDHs材料在生物医药领域的未来发展方向进行了展望.
李佳欣, 李蓓, 王纪康, 何蕾, 赵宇飞. 水滑石(LDHs)及其衍生物在生物医药领域的研究进展[J]. 化学学报, 2021, 79(3): 238-256.
Jiaxin Li, Bei Li, Jikang Wang, Lei He, Yufei Zhao. Recent Advances in Layered Double Hydroxides and Their Derivatives for Biomedical Applications[J]. Acta Chimica Sinica, 2021, 79(3): 238-256.
Strategies | Nanometerial | Bacteria | Reference |
---|---|---|---|
Pristine LDHs and MMO nanostructures | ZnFe-LDH、ZnAl-LDH | E.coliandS.aureus | Appl. Clay Sci. 2018, 165, 179 [ |
ZnFe-LDH | MRSA, Gram-negative, Gram-positive and fungi | Mater. Sci. Eng. C 2016, 68, 184 [ | |
CoFe-LDH | E. coli,S. aureus,St. coccus, andP. aeruginosa | RSC Adv. 2019, 9, 32544 [ | |
ZnTi-LDH | S. cerevisiae,S. aureusandE. coli | J. Mater. Chem. B 2013, 1, 5988 [ | |
CoV-MMO | E. coli | Appl. Catal., B 2020.261, 118256 [ | |
MgAl-MMO | Bacillus subtilis var. nigerand S. aureus | Eur. Phys. J. D 2005, 34, 321 [ | |
ZnO/LDH | E.coli and S.aureus | Colloids Surf. B Biointerfaces 2019,81, 585 [ | |
Organo-modified LDHs | U-LDH/ chitosan | E. coli,S. aureus andP. cyclopium | Polymers, 2019, 11, 1588 [ |
Butyrate-inserted NiTi-LDH | E.coliandS.aureus | Mater. Today, 2017, 20, 238 [ | |
LDH/antimicrobial peptides | E. coliandS. aureus | Phys. Chem. Chem. Phys. 2017, 19, 23832 [ | |
PEO/Mg-Zn-Al LDH | S. aureus | ACS Biomater. Sci. Eng. 2018, 4, 4112 [ | |
DHAD/ZnAlTi-LDH | E. coliandS. aureus | RSC Adv. 2020, 10, 9786 [ | |
LDHs immobilized enzyme | Lysozyme@ZnMgAl-LDH | E. coliandS. aureus | Bioconjugate Chem. 2018, 29, 2090 [ |
HNTs@LDH-Lysozyme | E. coli | ACS Sustain. Chem. Eng. 2015, 3, 1183 [ | |
Ag NPs deposited LDHs | Ag-MgAl-LDH | E. coliandS. aureus | Mater. Lett. 2020, 265, 127349 [ |
Ag@Vitamin B9-LDH | E. coli and S. aureus | Polymer, 2018, 154, 188 [ | |
Ag-LDH | E. coli and S. aureus | Adv. Funct. Mater. 2012, 22, 780 [ |
Strategies | Nanometerial | Bacteria | Reference |
---|---|---|---|
Pristine LDHs and MMO nanostructures | ZnFe-LDH、ZnAl-LDH | E.coliandS.aureus | Appl. Clay Sci. 2018, 165, 179 [ |
ZnFe-LDH | MRSA, Gram-negative, Gram-positive and fungi | Mater. Sci. Eng. C 2016, 68, 184 [ | |
CoFe-LDH | E. coli,S. aureus,St. coccus, andP. aeruginosa | RSC Adv. 2019, 9, 32544 [ | |
ZnTi-LDH | S. cerevisiae,S. aureusandE. coli | J. Mater. Chem. B 2013, 1, 5988 [ | |
CoV-MMO | E. coli | Appl. Catal., B 2020.261, 118256 [ | |
MgAl-MMO | Bacillus subtilis var. nigerand S. aureus | Eur. Phys. J. D 2005, 34, 321 [ | |
ZnO/LDH | E.coli and S.aureus | Colloids Surf. B Biointerfaces 2019,81, 585 [ | |
Organo-modified LDHs | U-LDH/ chitosan | E. coli,S. aureus andP. cyclopium | Polymers, 2019, 11, 1588 [ |
Butyrate-inserted NiTi-LDH | E.coliandS.aureus | Mater. Today, 2017, 20, 238 [ | |
LDH/antimicrobial peptides | E. coliandS. aureus | Phys. Chem. Chem. Phys. 2017, 19, 23832 [ | |
PEO/Mg-Zn-Al LDH | S. aureus | ACS Biomater. Sci. Eng. 2018, 4, 4112 [ | |
DHAD/ZnAlTi-LDH | E. coliandS. aureus | RSC Adv. 2020, 10, 9786 [ | |
LDHs immobilized enzyme | Lysozyme@ZnMgAl-LDH | E. coliandS. aureus | Bioconjugate Chem. 2018, 29, 2090 [ |
HNTs@LDH-Lysozyme | E. coli | ACS Sustain. Chem. Eng. 2015, 3, 1183 [ | |
Ag NPs deposited LDHs | Ag-MgAl-LDH | E. coliandS. aureus | Mater. Lett. 2020, 265, 127349 [ |
Ag@Vitamin B9-LDH | E. coli and S. aureus | Polymer, 2018, 154, 188 [ | |
Ag-LDH | E. coli and S. aureus | Adv. Funct. Mater. 2012, 22, 780 [ |
Applications | Nanomaterial | Performance | Reference |
---|---|---|---|
Cancer diagnosis | Mn-LDH | T1-weighted magnetic resonance imaging (T1-MRI) | Adv. Mater. 2017, 1700373 [ |
CN/LDH | Fluorescence imaging | Adv. Mater. 2017, 1704376 [ | |
Monotherapy | isophthalic acid/LDH | PDT therapy under 808 nm NIR laser | Nat. Commun. 2018, 9, 2798 [ |
peptide nucleic acid/LDH | Gene therapy | Small 2020, 16, 1907233 [ | |
ZnPc(1.5%)/LDH | PDT therapy under 650 nm | Adv. Funct. Mater. 2014, 24, 3144 [ | |
2D PEG/Fe-LDH | Chemodynamic therapy | Adv. Sci. 2018, 5, 1801155 [ | |
Combination therapy | DOX&ICG/MLDHa | Fluorescence, magnetic resonance imaging and chemo/PTT/ PDT therapy under 808 nm NIR laser g | Adv. Mater. 2018, 1707389 [ |
SN38&ICG/Gd&Yb-LDH monolayerc | Tri-mode imaging (CT, MR and near infrared fluorescence (NIRF) imaging) and chemo/PTT/PDT therapy under 808 nm NIR laser. | Chem. Sci. 2018, 9, 5630 [ | |
siRNA/Cu-LDH@PEG-PA/DM | MR, PTT and gene therapy | Small2020, 2002115 [ | |
Cancer diagnosis and therapy | 5-FU/Cu-LDH-25 d | T1-MRI and PTT/chemo-therapy under 808 nm NIR laser. | Biomaterials, 2018, 177, 40 [ |
CD-Ce6/LDH | Fluorescence imaging and PDT therapy under 650 nm NIR light. | Chem. Commun. 2018, 54, 5760 [ | |
Ce6&AuNCs/Gd-LDHe | Magnetic resonance/fluorescence imaging and PDT therapy with a simulated sunlight source. | Biomaterials 2018, 165, 14 [ | |
DOX-FA/LDHs f | Fluorescence imaging and chemotherapy. | J. Mater. Chem. B 2016, 4, 1331 [ | |
ICG-FA/LDH | Fluorescence imaging and PTT therapy under 633 nm with a He-Ne laser. | RSC Adv. 2016, 6, 16608 [ |
Applications | Nanomaterial | Performance | Reference |
---|---|---|---|
Cancer diagnosis | Mn-LDH | T1-weighted magnetic resonance imaging (T1-MRI) | Adv. Mater. 2017, 1700373 [ |
CN/LDH | Fluorescence imaging | Adv. Mater. 2017, 1704376 [ | |
Monotherapy | isophthalic acid/LDH | PDT therapy under 808 nm NIR laser | Nat. Commun. 2018, 9, 2798 [ |
peptide nucleic acid/LDH | Gene therapy | Small 2020, 16, 1907233 [ | |
ZnPc(1.5%)/LDH | PDT therapy under 650 nm | Adv. Funct. Mater. 2014, 24, 3144 [ | |
2D PEG/Fe-LDH | Chemodynamic therapy | Adv. Sci. 2018, 5, 1801155 [ | |
Combination therapy | DOX&ICG/MLDHa | Fluorescence, magnetic resonance imaging and chemo/PTT/ PDT therapy under 808 nm NIR laser g | Adv. Mater. 2018, 1707389 [ |
SN38&ICG/Gd&Yb-LDH monolayerc | Tri-mode imaging (CT, MR and near infrared fluorescence (NIRF) imaging) and chemo/PTT/PDT therapy under 808 nm NIR laser. | Chem. Sci. 2018, 9, 5630 [ | |
siRNA/Cu-LDH@PEG-PA/DM | MR, PTT and gene therapy | Small2020, 2002115 [ | |
Cancer diagnosis and therapy | 5-FU/Cu-LDH-25 d | T1-MRI and PTT/chemo-therapy under 808 nm NIR laser. | Biomaterials, 2018, 177, 40 [ |
CD-Ce6/LDH | Fluorescence imaging and PDT therapy under 650 nm NIR light. | Chem. Commun. 2018, 54, 5760 [ | |
Ce6&AuNCs/Gd-LDHe | Magnetic resonance/fluorescence imaging and PDT therapy with a simulated sunlight source. | Biomaterials 2018, 165, 14 [ | |
DOX-FA/LDHs f | Fluorescence imaging and chemotherapy. | J. Mater. Chem. B 2016, 4, 1331 [ | |
ICG-FA/LDH | Fluorescence imaging and PTT therapy under 633 nm with a He-Ne laser. | RSC Adv. 2016, 6, 16608 [ |
[1] |
Yang, K.; Feng, L.; Shi, X., Liu, Z. Chem. Soc. Rev. 2013, 42,530.
doi: 10.1039/c2cs35342c pmid: 23059655 |
[2] |
Zhao, Y.; Waterhouse, G. I. N.; Chen, G.; Xiong, X.; Wu, L.-Z.; Tung, C.-H., Zhang, T. Chem. Soc. Rev. 2019, 48,1972.
pmid: 30357195 |
[3] |
Narayanan, T. N.; Gupta, B. K.; Vithayathil, S. A.; Aburto, R. R.; Mani, S. A.; Taha-Tijerina, J.; Xie, B.; Kaipparettu, B. A.; Torti, S. V., Ajayan, P. M. Adv. Mater. 2012, 24,2992.
doi: 10.1002/adma.201200706 pmid: 22573478 |
[4] |
Liu, S.; Pan, X.; Liu, H. Angew. Chem., Int. Ed. 2020, 59,2.
|
[5] |
Yang, X.; Wang, D.; Zhu, J.; Xue, L.; Ou, C.; Wang, W.; Lu, M.; Song, X., Dong, X. Chem. Sci. 2019, 10,3779.
doi: 10.1039/c8sc04844d pmid: 30996966 |
[6] |
Ouyang, J.; Feng, C.; Ji, X.; Li, L.; Gutti, H. K.; Kim, N. Y.; Artzi, D.; Xie, A.; Kong, N.; Liu, Y. N.; Tearney, G. J.; Sui, X.; Tao, W., Farokhzad, O. C. Angew. Chem., Int. Ed. 2019, 58,13405.
doi: 10.1002/anie.v58.38 |
[7] |
Lin, H.; Wang, Y.; Gao, S.; Chen, Y.; Shi, J. Adv. Mater. 2017, 30,1703284.
doi: 10.1002/adma.v30.4 |
[8] |
Mei, X.; Ma, J.; Bai, X.; Zhang, X.; Zhang, S.; Liang, R.; Wei, M.; Evans, D. G., Duan, X. Chem. Sci. 2018, 9,5630.
pmid: 30061996 |
[9] |
Chen, W.; Zuo, H.; Li, B.; Duan, C.; Rolfe, B.; Zhang, B.; Mahony, T. J., Xu, Z. P. Small 2018, 14,e1704465.
doi: 10.1002/smll.201704465 pmid: 29655306 |
[10] |
Mitter, N.; Worrall, E. A.; Robinson, K. E.; Li, P.; Jain, R. G.; Taochy, C.; Fletcher, S. J.; Carroll, B. J.; Lu, G. Q.; Xu, Z. P. Nat. Plants 2017, 3,16207.
doi: 10.1038/nplants.2016.207 pmid: 28067898 |
[11] |
Cao, Z.; Li, B.; Sun, L.; Li, L.; Xu, Z. P.; Gu, Z. Small Methods 2019,1900343.
|
[12] |
Yan, L.; Gonca, S.; Zhu, G.; Zhang, W.; Chen, X. J. Mater. Chem. B 2019, 7,5583.
pmid: 31508652 |
[13] |
Zhao, Y.; Wang, C. J.; Gao, W.; Li, B.; Wang, Q.; Zheng, L.; Wei, M.; Evans, D. G.; Duan, X.; O'Hare, D. J. Mater. Chem. B 2013, 1,5988.
pmid: 32261066 |
[14] |
Mohapatra, L.; Parida, K. J. Mater. Chem. A 2016, 4,10744.
doi: 10.1039/C6TA01668E |
[15] |
Fan, G.; Li, F.; Evans, D. G., Duan, X. Chem. Soc. Rev. 2014, 43,7040.
doi: 10.1039/c4cs00160e pmid: 25001024 |
[16] |
Wei, M.; Yang, Y.; Yu, J. Acta Chim. Sinica 2019, 77,1129.
doi: 10.6023/A19070260 |
( 余俊, 杨宇森, 卫敏, 化学学报, 2019, 77, 1129.)
|
|
[17] |
Huo, W.; Cao, T.; Liu, X.; Xu, W.; Dong, B.; Zhang, Y.; Dong, F. Green Energy Environ. 2019, 4,270.
|
[18] |
Qiu, C.; Bai, S.; Cao, W.; Tan, L.; Liu, J.; Zhao, Y.; Song, Y.-F. Trans. Tianjin Univ. 2020, 26,352.
|
[19] |
Zhang, L.; Guo, D.; Tantai, X.; Jiang, B.; Sun, Y.; Yang, N. Trans. Tianjin Univ. 2020,.
|
[20] |
Feng, J.; He, Y.; Liu, Y.; Du, Y.; Li, D. Chem. Soc. Rev. 2015, 44,5291.
doi: 10.1039/c5cs00268k pmid: 25962432 |
[21] |
Omwoma, S.; Chen, W.; Tsunashima, R.; Song, Y.-F. Coordin. Chem. Rev. 2014, 58,258.
|
[22] |
Mishra, G.; Dash, B.; Pandey, S. Appl. Clay Sci. 2018, 153,172.
|
[23] |
Zhao, Y.; Jia, X.; Waterhouse, G. I. N.; Wu, L.-Z; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2016, 6,1501974.
|
[24] |
Laipan, M.; Yu, J.; Zhu, R.; Zhu, J.; Smith, A. T.; He, H.; O'Hare, D., Sun, L. Mater. Horizons 2020, 7,715.
|
[25] |
Wang, X.; Wang, Z.; Bai, Y.; Tan, L.; Xu, Y.; Hao, X.; Wang, J.; Mahadi, A. H.; Zhao, Y.; Zheng, L., Song, Y.-F. J. Energy Chem. 2020, 46,1.
|
[26] |
Wang, L.; Yu, Q.; Feng, C.; Zhang, Y.; Z, Hu, J. Chin. J. Org. Chem. 2019, 39,1787.
|
( 王力耕, 余琴, 冯春, 张岩, 胡军, 有机化学, 2019, 39, 1787.)
|
|
[27] |
Yan, H.; Zhao, X.-J.; Zhu, Y.-Q.; Wei, M.; Evans, D. G., Duan, X. In Structure and Bonding, Vol. 182, Ed.:Mingos, D. M.P., Springer, Cham, 2019, p. 89.
|
[28] |
Guan, S; Liang, R; Li, C; Yan, D; Wei, M; Evans, D G, Duan, X. J. Mater. Chem. B 2016, 4,1331.
doi: 10.1039/c5tb02521d pmid: 32262988 |
[29] |
Zhao, Y; Jia, X; Chen, G; Shang, L; Waterhouse, G I; Wu, L Z; Tung, C H; O'Hare, D, Zhang, T. J. Am. Chem. Soc. 2016, 138,6517.
pmid: 27159825 |
[30] |
Guo, Y.; Wang, J.; Li, D.; Tang, P.; Leroux, F.; Feng, Y. Dalton Trans. 2018, 47,3144.
pmid: 29334384 |
[31] |
Wang, Z.; Xu, S. M.; Xu, Y.; Tan, L.; Wang, X.; Zhao, Y.; Duan, H.; Song, Y. F. Chem. Sci. 2019, 10,378.
doi: 10.1039/c8sc04480e pmid: 30746087 |
[32] |
Tan, L.; Xu, S. M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; Jo, Y. K.; Hwang, S. J.; Cao, X.; Zheng, X.; Yan, H.; Zhao, Y.; Duan, H.; Song, Y.-F. Angew. Chem., Int. Ed. 2019, 58,11860.
|
[33] |
Qiu, L.; Gao, Y.; Lu, P.; O'Hare, D.; Wang, Q. J. Appl. Polym. Sci. 2018, 135,46204.
|
[34] |
Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. ACS Appl. Mater. Interfaces 2018, 10,2667.
pmid: 29286632 |
[35] |
Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47,3556.
|
[36] |
Xiong, P.; Zhang, X.; Wan, H.; Wang, S.; Zhao, Y.; Zhang, J.; Zhou, D.; Gao, W.; Ma, R.; Sasaki, T.; Wang, G. Nano Lett. 2019, 19,4518.
doi: 10.1021/acs.nanolett.9b01329 pmid: 31185571 |
[37] |
Li, T.; Hao, X.; Bai, S.; Zhao, Y.; Song, Y.-F. Acta Phys. -Chim. Sin. 2020, 36,1912005.
|
( 李天, 郝晓杰, 白莎, 赵宇飞, 宋宇飞, 物理化学学报, 2020, 36,1912005.)
|
|
[38] |
Park, D.-H.; Hwang, S.-J.; Oh, J.-M.; Yang, J.-H., Choy, J.-H. Prog. Polym. Sci. 2013, 38,1442.
doi: 10.1016/j.progpolymsci.2013.05.007 |
[39] |
Wang, N.; Pang, H.; Yu, S.; Gu, P.; Song, S.; Wang, H.; Wang, X. Acta Chimica Sinica 2019, 77,143.
doi: 10.6023/A18090404 pmid: 943B5BA0-1D07-48D9-BDE3-AA3105E67061 |
( 王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77,143.) bb1bdfcb-c17e-4662-9e96-5bb944fac274
doi: 10.6023/A18090404 pmid: 943B5BA0-1D07-48D9-BDE3-AA3105E67061 |
|
[40] |
Kwon, D.; Kang, J. Y.; An, S.; Yang, I.; Jung, J. C. J. Energy Chem. 2020, 46,229.
doi: 10.1016/j.jechem.2019.11.013 |
[41] |
Nocchetti, M.; Donnadio, A.; Ambrogi, V.; Andreani, P.; Bastianini, M.; Pietrella, D.; Latterini, L. J. Mater. Chem. B 2013, 1,2383.
doi: 10.1039/c3tb00561e pmid: 32261073 |
[42] |
Wang, D.; Peng, F.; Li, J.; Qiao, Y.; Li, Q.; Liu, X. Mater. Today 2017, 20,238.
doi: 10.1016/j.mattod.2017.05.001 |
[43] |
Wang, S.; Xu, M.; Huang, K.; Zhi, J.; Sun, C.; Wang, K.; Zhou, Q.; Gao, L.; Jia, Q.; Shi, H.; An, Z.; Li, P.; Huang, W. Sci. Chin. Mater. 2019, 63,316.
doi: 10.1007/s40843-019-1191-9 |
[44] |
Teng, Z.; Yang, N.; Lv, H.; Wang, S.; Hu, M.; Wang, C.; Wang, D.; Wang, G. Chem 2019, 5,664.
doi: 10.1016/j.chempr.2018.12.009 |
[45] |
Zhao, Y.; Chen, P.; Zhang, B.; Su, D. S.; Zhang, S.; Tian, L.; Lu, J.; Li, Z.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. Chem. - Eur. J. 2012, 18,11949.
doi: 10.1002/chem.201201065 pmid: 22927368 |
[46] |
Wu, L-Z. Acta Phys.-Chim. Sin. 2020, 36,2004005.
|
( 吴骊珠, 物理化学学报, 2020, 36,2004005)
|
|
[47] |
Hargreaves, J. S. J.; Chung, Y.-M.; Ahn, W.-S.; Hisatomi, T.; Domen, K.; Kung, M. C.; Kung, H. H. Appl. Catal. A Gen. 2020, 594,117419.
doi: 10.1016/j.apcata.2020.117419 |
[48] |
Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C., Walsh, F. C. Nat. Rev. Chem. 2019, 3,442.
doi: 10.1038/s41570-019-0110-6 |
[49] |
García-Fernández, I.; Polo-López, M. I.; Oller, I., Fernández-Ibáñez, P. Appl. Catal., B 2012, 20,121.
|
[50] |
Peng, F.; Wang, D.; Zhang, D.; Cao, H., Liu, X. Appl. Clay Sci. 2018, 165,179.
doi: 10.1016/j.clay.2018.08.020 |
[51] |
Moaty, S. A. A.; Farghali, A. A.; Khaled, R. Mater. Sci. Eng. C 2016, 68,184.
doi: 10.1016/j.msec.2016.05.110 |
[52] |
Amin, R. M.; Taha, M.; Abdel Moaty, S. A.; Abo El-Ela, F. I.; Nassar, H. F.; GadelHak, Y., Mahmoud, R. K. RSC Adv. 2019, 9,32544.
doi: 10.1039/C9RA06509A |
[53] |
Suo, H.; Peng, C.; Jing, F.; Yu, S.; Cui, S., Shen, X. Mater. Lett. 2019, 234,253.
doi: 10.1016/j.matlet.2018.09.106 |
[54] |
Yamamoto, O.; Sawai, J.; Sasamoto, T. Int. J. Environ. Sci. Technol. 2000, 2,451.
|
[55] |
Hao, Y. J.; Liu, B.; Tian, L. G.; Li, F. T.; Ren, J.; Liu, S. J.; Liu, Y.; Zhao, J.; Wang, X. J. ACS Appl. Mater. Interfaces 2017, 9,12687.
pmid: 28339179 |
[56] |
Lin, Y.-J.; Li, D.-Q.; Wang, G.; Huang, L.; Duan, X. J. Mater. Sci. 2005, 16,53.
|
[57] |
Huang, L.; Li, D. Q.; Lin, Y. J.; Wei, M.; Evans, D. G.; Duan, X. J. Inorg. Biochem. 2005, 99,986.
doi: 10.1016/j.jinorgbio.2004.12.022 pmid: 15833320 |
[58] |
Huang, L.; Li, D. Q.; Evans, D. G.; Duan, X. Eur. Phys. J. D 2005, 34,321. 293da9c0-b5fe-46e3-bef9-5e0675b39ef1
doi: 10.1140/epjd/e2005-00167-8 |
[59] |
Lv, Y.; Gao, L.; Feng, S.; Wang, S.; Qiao, Y.; Li, Q. Sep. Sci. Technol. 2018, 54,2625.
doi: 10.1080/01496395.2018.1548484 |
[60] |
Li, M.; Xu, Z. P.; Sultanbawa, Y.; Chen, W.; Liu, J.; Qian, G. Colloids Surf., B 2019, 181,585.
doi: 10.1016/j.colsurfb.2019.06.013 |
[61] |
Wang, R.; Pan, K.; Han, D.; Jiang, J.; Xiang, C.; Huang, Z.; Zhang, L.; Xiang, X. ChemSusChem 2016, 9,2470.
doi: 10.1002/cssc.201600705 pmid: 27484581 |
[62] |
Han, D.; Xiang, X.; Yang, J.; Liu, J. Sci. Sin. Chim. 2017, 47,465.
doi: 10.1360/N032016-00232 |
[63] |
Xu, Y.; Tan, L.; Wang, Z.; Hao, X.; Wang, J.; Zhao, Y.; Song, Y.-F. Chin. Sci. Bull. 2018, 63,3598.
doi: 10.1360/N972018-00839 |
( 许艳旗, 谭玲, 王泽林, 郝晓杰, 王纪康, 赵宇飞, 宋宇飞, 科学通报, 2018, 63,3598.)
|
|
[64] |
Sun, J.; Fan, H.; Wang, N.; Ai, S. J. Nanopart. Res. 2014, 16,2597.
doi: 10.1007/s11051-014-2597-6 |
[65] |
Mishra, G.; Dash, B.; Sethi, D.; Pandey, S.; Mishra, B. K. Energy Environ. Sci. 2017, 34,516.
|
[66] |
Liu, X.; Hu, T.; Lin, G.; Wang, X.; Zhu, Y.; Liang, R.; Duan, W.; Wei, M. RSC Adv. 2020, 10,9786.
doi: 10.1039/D0RA00572J |
[67] |
Nguyen, T. K. L.; Nguyen, T. L.; Cao, X. T.; Park, C.; Lim, K. T. Mol. Cryst. Liq. Cryst. 2016, 635,120.
doi: 10.1080/15421406.2016.1200378 |
[68] |
Xu, F. J.; Zhong, S. P.; Yung, L. Y. L.; Kang, E. T.; Neoh, K. G. Biomacromolecules 2004, 5,2392.
pmid: 15530056 |
[69] |
Ren, L.; He, J.; Evans, D. G.; Duan, X.; Ma, R. J. Mol. Catal. B: Enzym. 2001, 16,65.
doi: 10.1016/S1381-1177(01)00044-3 |
[70] |
Shi, W.; Wei, M.; Jin, L.; Li, C. J. Mol. Catal. B: Enzym. 2007, 47,58.
doi: 10.1016/j.molcatb.2007.04.001 |
[71] |
Wang, Y.; Liu, C.; Zhang, Y.; Zhang, B.; Liu, J. ACS Sustain. Chem. Eng. 2015, 3,1183.
doi: 10.1021/acssuschemeng.5b00104 |
[72] |
Wang, Z.; Yu, H.; Ma, K.; Chen, Y.; Zhang, X.; Wang, T.; Li, S.; Zhu, X.; Wang, X. Bioconjug. Chem. 2018, 29,2090.
doi: 10.1021/acs.bioconjchem.8b00305 pmid: 29847098 |
[73] |
Chen, C.; Gunawan, P.; Lou, X. W. D.; Xu, R. Adv. Funct. Mater. 2012, 22,780.
doi: 10.1002/adfm.201102333 |
[74] |
Mishra, G.; Dash, B.; Pandey, S.; Mohanty, P. P. J. Environ. Chem. Eng. 2013, 1,1124.
doi: 10.1016/j.jece.2013.08.031 |
[75] |
Sun, J.; Li, J.; Fan, H.; Ai, S. J. Mater. Chem. B 2013, 1,5436.
doi: 10.1039/c3tb20871k pmid: 32261250 |
[76] |
Xiao, F.; Liu, X.; Xiao, Y.; Chen, F.; Wu, Y. New J. Chem. 2017, 41,7260.
doi: 10.1039/C7NJ00853H |
[77] |
Wang, Y.; Chen, C.; Zhang, D.; Wang, J. Appl. Catal., B Environ. 2020, 261,118256.
doi: 10.1016/j.apcatb.2019.118256 |
[78] |
Gohi, B.; Zeng, H. Y.; Cao, X. J.; Zou, K. M.; Diao, Y. Polymers 2019, 11,1588.
doi: 10.3390/polym11101588 |
[79] |
Malekkhaiat, H. S.; Nystrom, L.; Nordstrom, R.; Xu, Z. P.; Davoudi, M.; Schmidtchen, A.; Malmsten, M. Phys. Chem. Chem. Phys. 2017, 19,23832.
doi: 10.1039/c7cp02701j pmid: 28682360 |
[80] |
Peng, F.; Wang, D.; Zhang, D.; Yan, B.; Cao, H.; Qiao, Y.; Liu, X. ACS Biomater. Sci. Eng. 2018, 4,4112.
pmid: 33418810 |
[81] |
Zhao, Y.; Chen, Y.; Wang, W.; Zhou, Z.; Shi, S.; Li, W.; Chen, M.; Li, Z. Mater. Lett. 2020, 265,127349.
doi: 10.1016/j.matlet.2020.127349 |
[82] |
Mallakpour, S.; Hatami, M. Polymer 2018, 154,188.
doi: 10.1016/j.polymer.2018.08.077 |
[83] |
Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. ACS Nano 2018, 12,11819.
doi: 10.1021/acsnano.8b07635 pmid: 30457834 |
[84] |
Liang, R.; Tian, R.; Ma, L.; Zhang, L.; Hu, Y.; Wang, J.; Wei, M.; Yan, D.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2014, 24,3144.
doi: 10.1002/adfm.201303811 |
[85] |
Gao, R.; Mei, X.; Yan, D.; Liang, R.; Wei, M. Nat. Commun. 2018, 9,2798.
pmid: 30022060 |
[86] |
Li, C.; Liang, R.; Tian, R.; Guan, S.; Yan, D.; Luo, J.; Wei, M.; Evans, D. G.; Duan, X. RSC Adv. 2016, 6,16608.
doi: 10.1039/C5RA23686J |
[87] |
Cao, Z.; Zhang, L.; Liang, K.; Cheong, S.; Boyer, C.; Gooding, J. J.; Chen, Y.; Gu, Z. Adv. Sci. 2018, 5,1801155.
doi: 10.1002/advs.v5.11 |
[88] |
Yu, Z.; Hu, P.; Xu, Y.; Bao, Q.; Ni, D.; Wei, C.; Shi, J. Small 2020, 16,e1907233.
pmid: 32406198 |
[89] |
Liu, J.; Wu, Y.; Fu, C.; Li, B.; Li, L.; Zhang, R.; Xu, T.; Xu, Z. P. Small 2020,e2002115.
pmid: 32608187 |
[90] |
Peng, L.; Mei, X.; He, J.; Xu, J.; Zhang, W.; Liang, R.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2018, 30,e1707389.
pmid: 29537662 |
[91] |
Zhang, L. X.; Sun, X. M.; Xu, Z. P.; Liu, R. T. ACS Appl. Mater. Interfaces 2019, 11,35566.
doi: 10.1021/acsami.9b11746 pmid: 31496214 |
[92] |
Dai, Y.; Xu, C.; Sun, X.; Chen, X. Chem. Soc. Rev. 2017, 46,3830.
doi: 10.1039/c6cs00592f pmid: 28516983 |
[93] |
Li, B.; Gu, Z.; Kurniawan, N.; Chen, W.; Xu, Z. P. Adv. Mater. 2017, 29,1700373.
doi: 10.1002/adma.201700373 |
[94] |
Li, B.; Tang, J.; Chen, W.; Hao, G.; Kurniawan, N.; Gu, Z., Xu, Z. P. Biomaterials 2018, 177,40.
pmid: 29883915 |
[95] |
Plotkin, S. A. Clin. Infect. Dis. 2008, 47,401.
doi: 10.1086/589862 pmid: 18558875 |
[96] |
Liu, W.; Xu, S.; Guan, S.; Liang, R.; Wei, M.; Evans, D. G., Duan, X. Adv. Mater. 2017, 30,1704376.
doi: 10.1002/adma.v30.2 |
[97] |
Hu, T.; He, J.; Zhang, S.; Mei, X.; Zhang, W.; Liang, R.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2018, 54,5760.
doi: 10.1039/C8CC02792G |
[98] |
Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D. G.; Duan, X. Biomaterials 2018, 165,14.
pmid: 29500979 |
[99] |
Chen, W. Y.; Zhang, B.; Mahony, T.; Gu, W. Y.; Rolfe, B.; Xu, Z. P. Small 2016, 12,1627.
doi: 10.1002/smll.201503359 pmid: 27000499 |
[100] |
Yan, S. Y.; Gu, W. Y.; Zhang, B.; Rolfe, B. E.; Xu, Z. P. Dalton T 2018, 47,2956.
doi: 10.1039/C7DT03725B |
[101] |
Yan, S. Y.; Rolfe, B. E.; Zhang, B.; Mohammed, Y. H.; Gu, W. Y.; Xu, Z. P. Biomaterials 2014, 35,9508. 1e2b868a-de35-4e18-b22a-713ca20d5eb2
doi: 10.1016/j.biomaterials.2014.07.055 pmid: 25145853 |
[102] |
Zhang, L. X.; Xie, X. X..; Liu, D. Q.; Xu, Z. P.; Liu, R. T. Biomaterials 2018, 174,54.
pmid: 29778982 |
[103] |
Williams, G. R.; Fierens, K.; Preston, S. G.; Lunn, D.; Rysnik, O.; De Prijck, S.; Kool, M.; Buckley, H. C.; Lambrecht, B. N.; O'Hare, D.; Austyn, J. M. J. Exp. Med. 2014, 211,1019.
pmid: 24799501 |
[104] |
Tenllado, F.; Llave, C.; Diaz-Ruiz, J. R. Virus Res. 2004, 102,85.
doi: 10.1016/j.virusres.2004.01.019 pmid: 15068884 |
[105] |
Tenllado, F.; Martinez-Garcia, B.; Vargas, M.; Diaz-Ruiz, J. R. BMC Biotechnol. 2003, 3,3.
doi: 10.1186/1472-6750-3-3 pmid: 12659646 |
[106] |
Caspar, D. L. D. Nature 1956, 177,928.
|
[107] |
Scholthof, K. B. G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; Hemenway, C., Foster, G. D. Mol. Plant Pathol. 2011, 12,938.
pmid: 22017770 |
[108] |
Bruna, F.; Pavlovic, I.; Celis, R.; Barriga, C.; Cornejo, J.; Ulibarri, M. A. Appl. Clay Sci. 2008, 42,194.
doi: 10.1016/j.clay.2008.02.001 |
[109] |
Chaara, D.; Bruna, F.; Ulibarri, M. A.; Draoui, K.; Barriga, C.; Pavlovic, I. J. Hazard Mater. 2011, 196,350.
pmid: 21978582 |
[110] |
Khan, A. I.; Ragavan, A.; Fong, B.; Markland, C.; O'Brien, M.; Dunbar, T. G.; Williams, G R, O'Hare, D. Ind. Eng. Chem. Res. 2009, 48,10196.
doi: 10.1021/ie9012612 |
[111] |
Khan, M. A.; Choi, C. L.; Lee, D. H.; Park, M.; Lim, B. K.; Lee, J. Y.; Choi, J. J. Phys. Chem. Solids 2007, 68,1591.
doi: 10.1016/j.jpcs.2007.03.045 |
[112] |
Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Chem. Mater. 2002, 14,4286.
doi: 10.1021/cm020370h |
[113] |
Evans, D. G.; Duan, X. Chem. Commun. 2006,485.
|
[114] |
Wang, Z.; Xu, Y.; Tan, L.; Zhao, Y.; Song, Y.-F. Chin. Sci. Bull. 2020, 65,547.
doi: 10.1360/TB-2019-0650 |
( 王泽林, 许艳旗, 谭玲, 赵宇飞, 宋宇飞, 科学通报, 2020, 65,547.)
|
|
[115] |
Costantino, U.; Bugatti, V.; Gorrasi, G.; Montanari, F.; Nocchetti, M.; Tammaro, L.; Vittoria, V. ACS Appl. Mater. Interfaces 2009, 1,668.
doi: 10.1021/am8001988 pmid: 20355989 |
[116] |
Marek, A. A.; Verney, V.; Totaro, G.; Sisti, L.; Celli, A.; Cionci, N. B.; Di Gioia, D.; Massacrier, L.; Leroux, F. Appl. Clay Sci. 2020, 188,105502.
doi: 10.1016/j.clay.2020.105502 |
[117] |
Mulligan, C. N.; Yong, R. N.; Gibbs, B. F. Eng. Geol. 2001, 60,371.
doi: 10.1016/S0013-7952(00)00117-4 |
[118] |
Ko, I.; Chang, Y. Y.; Lee, C.H; Kim, K. W. J. Hazard Mater. 2005, 127,1.
pmid: 16122872 |
[119] |
Lei, X.; Jin, M.; Williams, G. R. Energy Environ. Sci. 2014, 3,4.
|
[1] | 郭彩霞, 马小杰, 王博. 金属有机框架基复合材料的制备及其光热性能研究[J]. 化学学报, 2021, 79(8): 967-985. |
[2] | 王涛, 赵璐, 王科伟, 白云峰, 冯锋. 共价有机框架的合成及其在肿瘤治疗中的应用研究进展[J]. 化学学报, 2021, 79(5): 600-613. |
[3] | 张留伟, 陈麒先, 王静云. 活性氧响应型抗肿瘤前药研究进展[J]. 化学学报, 2020, 78(7): 642-656. |
[4] | 曹萌轩, 代晓光, 陈贝贝, 赵娜娜, 徐福建. 纳米材料与细菌结合应用于肿瘤治疗[J]. 化学学报, 2020, 78(10): 1054-1063. |
[5] | 熊麟, 凡勇, 张凡. 稀土纳米晶用于近红外区活体成像和传感研究进展[J]. 化学学报, 2019, 77(12): 1239-1249. |
[6] | 余俊, 杨宇森, 卫敏. 水滑石基负载型催化剂的制备及其在催化反应中的应用[J]. 化学学报, 2019, 77(11): 1129-1139. |
[7] | 曾锦跃, 王小双, 张先正, 卓仁禧. 功能化金属-有机框架材料在肿瘤治疗中的研究进展[J]. 化学学报, 2019, 77(11): 1156-1163. |
[8] | 苏莹莹, 彭天欢, 邢菲菲, 李迪, 樊春海. 纳米等离子体生物传感及成像[J]. 化学学报, 2017, 75(11): 1036-1046. |
[9] | 纪光, 闫路林, 王慧, 马莲, 徐斌, 田文晶. 高效近红外聚集诱导发光纳米粒子用于生物成像的研究[J]. 化学学报, 2016, 74(11): 917-922. |
[10] | 刘腾, 程亮, 刘庄. 二维过渡金属硫族化合物在生物医学中的应用[J]. 化学学报, 2015, 73(9): 902-912. |
[11] | 贾云生, 王火焰, 赵雪松, 刘晓伟, 王一柳, 范群龙, 周健民. CaAl类水滑石的磷酸根吸附性能及其影响因素研究[J]. 化学学报, 2015, 73(11): 1207-1213. |
[12] | 兀晓文, 杜娜, 李海平, 张人杰, 侯万国. 喜树碱/氧化石墨烯/类水滑石纳米杂化物的制备及表征[J]. 化学学报, 2014, 72(8): 963-969. |
[13] | 张晓晴, 曾美桂, 李淑萍. 不同溶剂对甲氨蝶呤/类水滑石复合物性质的影响[J]. 化学学报, 2013, 71(02): 246-254. |
[14] | 祝海涛, 倪哲明, 薛继龙. 酸性湖蓝7在LDO上吸附性能及机理的研究[J]. 化学学报, 2012, 70(17): 1798-1804. |
[15] | 付晓微, 倪哲明, 刘娇. 反相气相色谱法探究铜镁铝水滑石的表面性质[J]. 化学学报, 2012, 70(08): 968-972. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||