化学学报 ›› 2021, Vol. 79 ›› Issue (5): 588-599.DOI: 10.6023/A20120561 上一篇 下一篇
综述
蔡莉莉a,b, 王静忆a,b, 朱雪峰a,b,c,*(), 杨维慎a,b
投稿日期:
2020-12-09
发布日期:
2021-01-25
通讯作者:
朱雪峰
作者简介:
蔡莉莉, 博士, 2019年6月于中国科学院大连化学物理研究所获理学博士学位, 目前在中国科学院大连化学物理研究所从事博士后工作, 主要研究方向为催化膜反应器. |
朱雪峰, 研究员, 博士生导师. 2006年12月于中国科学院大连化学物理研究所获理学博士学位. 主要从事用于气体分离的致密陶瓷膜、膜催化及相关电催化方面的研究. |
基金资助:
Lili Caia,b, Jingyi Wanga,b, Xuefeng Zhua,b,c,*(), Weishen Yanga,b
Received:
2020-12-09
Published:
2021-01-25
Contact:
Xuefeng Zhu
About author:
Supported by:
文章分享
混合导体透氧膜反应器可以将供氧反应、氧分离和耗氧反应耦合在一个单元, 实现反应和分离一体化, 简化化工过程. 水分解反应参与的混合导体透氧膜反应器能够实现氢气的制备和分离, 近年来受到越来越多的关注. 这篇文章综述了混合导体透氧膜反应器中水分解反应领域的研究进展, 总结了包括膜材料、催化剂、操作条件等对透氧膜反应器中水分解反应的影响, 分析了目前存在的问题, 同时展望了该领域在膜材料、膜结构和催化剂开发等方面的未来发展方向, 希望有助于促进膜反应器中水分解反应的研究.
蔡莉莉, 王静忆, 朱雪峰, 杨维慎. 混合导体透氧膜反应器中水分解反应研究进展[J]. 化学学报, 2021, 79(5): 588-599.
Lili Cai, Jingyi Wang, Xuefeng Zhu, Weishen Yang. Recent Progress on Mixed Conducting Oxygen Transport Membrane Reactors for Water Splitting Reaction[J]. Acta Chimica Sinica, 2021, 79(5): 588-599.
Membrane materials | Thickness/mm | T/℃ | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);He | 0.005 | [ | |
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);CO | 0.015 | [ | |
La0.7Sr0.3Cu0.2Fe0.8O3-δ (LSCF7328) | 0.53 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 1.9 | [ |
LSCF7328 | 0.02 | 900 | 49%H2O(g);80%H2 | — | ≈9 | [ |
LSCF7328 | 0.05 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 11.4 | [ |
BaFe0.9Zr0.1O3-δ | 1.05 | 900 | 49%H2O(g);99.5%CO | — | 3.2 | [ |
Ba0.98Ce0.05Fe0.95O3-δ (BCF) | 0.50 | 900 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 10.2 | [ |
BaZrxCoyFezO3-δ (BZCF) | 0.17a | 900 | 75%H2O(g);4%CH4 | — | 2.2 | [ |
La0.9Ca0.1FeO3-δ (LCF-91) | 0.90 | 990 | 50%H2O(g);5%CH4 | — | 0.5 | [ |
SrFeCo0.5Ox(SFC2) | 1.04 | 900 | 49%H2O(g);80%H2 | — | 4.0 | [ |
SrFeCo0.5Ox (SFC2) | 0.02 | 900 | 69%H2O(g);80%H2 | — | 17.4 | [ |
SrCo0.4Fe0.5Zr0.1O3-δ(SCFZ) | — | 900 | 69%H2O(g);6%EtOH | — | 3.4 | [ |
Membrane materials | Thickness/mm | T/℃ | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);He | 0.005 | [ | |
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);CO | 0.015 | [ | |
La0.7Sr0.3Cu0.2Fe0.8O3-δ (LSCF7328) | 0.53 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 1.9 | [ |
LSCF7328 | 0.02 | 900 | 49%H2O(g);80%H2 | — | ≈9 | [ |
LSCF7328 | 0.05 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 11.4 | [ |
BaFe0.9Zr0.1O3-δ | 1.05 | 900 | 49%H2O(g);99.5%CO | — | 3.2 | [ |
Ba0.98Ce0.05Fe0.95O3-δ (BCF) | 0.50 | 900 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 10.2 | [ |
BaZrxCoyFezO3-δ (BZCF) | 0.17a | 900 | 75%H2O(g);4%CH4 | — | 2.2 | [ |
La0.9Ca0.1FeO3-δ (LCF-91) | 0.90 | 990 | 50%H2O(g);5%CH4 | — | 0.5 | [ |
SrFeCo0.5Ox(SFC2) | 1.04 | 900 | 49%H2O(g);80%H2 | — | 4.0 | [ |
SrFeCo0.5Ox (SFC2) | 0.02 | 900 | 69%H2O(g);80%H2 | — | 17.4 | [ |
SrCo0.4Fe0.5Zr0.1O3-δ(SCFZ) | — | 900 | 69%H2O(g);6%EtOH | — | 3.4 | [ |
Membrane materials | Ratios of two phases | Thickness/ mm | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
(ZrO2)0.8(TiO2)0.1(Y2O3)0.1 (TiO2-YSZ) | — | 2a | 17%H2O(g);H2/CO2 (PO2 10-7Pa) | — | ≈0.5b | [ |
Cu-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.3 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | — | 3.9 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 6 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.4 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2 (g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 3.0 | [ |
Gd0.2Ce0.8O1.9-δ- Gd0.08Sr0.88Ti0.95Al0.05O3±δ (GDC-GSTA) | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | — | 2.0 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | NiO-GDC (VNiO/VGDC=50%) | 2.6 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);100%H2 | NiO-GDC (VNiO/VGDC=50%) | 3.1 | [ |
GDC-GSTA | 3/2 (volume ratio) | 0.025 | 25%H2O(g);- | — | ≈10 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Al0.3Fe0.7O3-δ (SDC-SSAF) | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 15.5 | [ |
SDC-SSAF | 3/1 (mass ratio) | 0.40 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 5.0 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) | 3/1 (mass ratio) | 0.70 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 5.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.50 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.5 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.9 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 4.6 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.2 | [ |
Ce0.85Sm0.15O1.925- Sr2Fe1.5Mo0.5O6-δ (SDC-SFM) | 7/3 (mass ratio) | 0.5 | 90% H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=2%) | 15.8 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | (Ni+Ru)/SDC (mNi/mSDC=1%, mRu/mSDC=1%) | 19.3 | [ |
Ce0.9Pr0.1O2-δ- Pr0.1Sr0.9Mg0.1Ti0.9O3-δ (CPO-PSMTi) | 3/2 (molar ratio) | 0.70 | 88%H2O(g);40%H2 | — | 0.41 | [ |
Membrane materials | Ratios of two phases | Thickness/ mm | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
(ZrO2)0.8(TiO2)0.1(Y2O3)0.1 (TiO2-YSZ) | — | 2a | 17%H2O(g);H2/CO2 (PO2 10-7Pa) | — | ≈0.5b | [ |
Cu-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.3 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | — | 3.9 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 6 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.4 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2 (g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 3.0 | [ |
Gd0.2Ce0.8O1.9-δ- Gd0.08Sr0.88Ti0.95Al0.05O3±δ (GDC-GSTA) | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | — | 2.0 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | NiO-GDC (VNiO/VGDC=50%) | 2.6 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);100%H2 | NiO-GDC (VNiO/VGDC=50%) | 3.1 | [ |
GDC-GSTA | 3/2 (volume ratio) | 0.025 | 25%H2O(g);- | — | ≈10 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Al0.3Fe0.7O3-δ (SDC-SSAF) | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 15.5 | [ |
SDC-SSAF | 3/1 (mass ratio) | 0.40 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 5.0 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) | 3/1 (mass ratio) | 0.70 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 5.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.50 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.5 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.9 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 4.6 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.2 | [ |
Ce0.85Sm0.15O1.925- Sr2Fe1.5Mo0.5O6-δ (SDC-SFM) | 7/3 (mass ratio) | 0.5 | 90% H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=2%) | 15.8 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | (Ni+Ru)/SDC (mNi/mSDC=1%, mRu/mSDC=1%) | 19.3 | [ |
Ce0.9Pr0.1O2-δ- Pr0.1Sr0.9Mg0.1Ti0.9O3-δ (CPO-PSMTi) | 3/2 (molar ratio) | 0.70 | 88%H2O(g);40%H2 | — | 0.41 | [ |
[1] |
Zhu, X. F.; Li, M. R.; Liu, H. Y.; Zhang, T. Y.; Cong, Y.; Yang, W. S. J. Membr. Sci. 2012, 394-395,120.
doi: 10.1016/j.memsci.2011.12.027 |
[2] |
Geffroy, P.-M.; Fouletier, J.; Richet, N.; Chartier, T. Chem. Eng. Sci. 2013, 87,408.
doi: 10.1016/j.ces.2012.10.027 |
[3] |
Sunarso, J.; Baumann, S.; Serra, J. M.; Meulenberg, W. A.; Liu, S.; Lin, Y. S. Diniz da Costa, J.C. J. Membr. Sci. 2008, 320,13.
doi: 10.1016/j.memsci.2008.03.074 |
[4] |
Shao, Z. P.; Yang, W. S.; Cong, Y.; Dong, H.; Tong, J. H.; Xiong, G. X. J. Membr. Sci. 2000, 172,177.
doi: 10.1016/S0376-7388(00)00337-9 |
[5] |
Tan, X. Y.; Liu, N.; Meng, B.; Liu, S. M. J. Membr. Sci. 2011, 378,308.
doi: 10.1016/j.memsci.2011.05.012 |
[6] |
Zeng, P. Y.; Ran, R.; Chen, Z. H.; Gu, H. X.; Shao, Z. P.; Liu, S. M. AIChE J. 2007, 53,3116.
doi: 10.1002/(ISSN)1547-5905 |
[7] |
Zhu, Y.; Cai, L. L.; Li, W. P.; Cao, Z. W.; Li, H. B.; Jiang, H. Q.; Zhu, X. F.; Yang, W. S. AIChE J. 2020, 66,e16291.
|
[8] |
Wang, S.; Shi, L.; Xie, Z. A.; Wang, H. Q.; Lan, Q.; He, Y.; Yan, D.; Zhang, X.; Luo, H. X. Chin. Sci. Bull. 2019, 64,1651. (in Chinese).
doi: 10.1360/N972018-01197 |
( 王舒, 石磊, 谢沚昂, 王好奇, 蓝琪, 何缘, 严冬, 张杏, 罗惠霞, 科学通报, 2019, 64,1651.)
|
|
[9] |
Shi, L.; Wang, S.; Lu, T. N.; He, Y.; Yan, D.; Lan, Q.; Xie, Z. A.; Wang, H. Q.; Li, M.-R.; Caro, J.; Luo, H. X. J. Alloy. Compd. 2019, 806,500.
doi: 10.1016/j.jallcom.2019.07.281 |
[10] |
Luo, H. X.; Klande, T.; Cao, Z. W.; Liang, F. Y.; Wang, H. H.; Caro, J. J. Mater. Chem. A 2014, 2,7780.
doi: 10.1039/C3TA14870J |
[11] |
Yang, Z. B.; Ding, W. Z.; Zhang, Y. Y.; Lu, X. G.; Zhang, Y. W.; Shen, P. J. Int. J. Hydrogen Energy 2010, 35,6239.
doi: 10.1016/j.ijhydene.2009.07.103 |
[12] |
Zhang, Y. W.; Liu, J.; Ding, W. Z.; Lu, X. G. Fuel 2011, 90,324.
doi: 10.1016/j.fuel.2010.08.027 |
[13] |
Zhang, G. R.; Jin, W. Q.; Xu, N. P. Energy 2018, 4,848.
|
[14] |
Zhu, X. F.; Yang, W. S. Adv. Mater. 2019, 31,1902547.
doi: 10.1002/adma.v31.50 |
[15] |
Zhu, X. F.; Yang, W. S. AIChE J. 2008, 54,665.
doi: 10.1002/(ISSN)1547-5905 |
[16] |
Zhu, X. F.; Liu, Y.; Cong, Y.; Yang, W. S. Solid State Ionics 2013, 253,57.
doi: 10.1016/j.ssi.2013.08.040 |
[17] |
Luo, H. X.; Jiang, H. Q.; Klande, T.; Cao, Z. W.; Liang, F. Y.; Wang, H. H.; Caro, J. Chem. Mater. 2012, 24,2148.
doi: 10.1021/cm300710p |
[18] |
Zhu, X. F.; Cong, Y.; Yang, W. S. J. Membr. Sci. 2006, 283,38.
doi: 10.1016/j.memsci.2006.06.010 |
[19] |
Zhu, X. F.; Wang, H. H.; Cong, Y.; Yang, W. S. Catal. Lett. 2006, 111,179.
doi: 10.1007/s10562-006-0145-4 |
[20] |
He, Z. Y.; Li, C. Q.; Chen, C. S.; Tong, Y. C.; Luo, T.; Zhan, Z. L. J. Power Sources 2018, 392,200.
doi: 10.1016/j.jpowsour.2018.04.085 |
[21] |
Cao, Z. W.; Jiang, H. Q.; Luo, H. X.; Baumann, S.; Meulenberg, W. A.; Assmann, J.; Mleczko, L.; Liu, Y.; Caro, J. Angew. Chem. Int. Ed. 2013, 52,13794.
doi: 10.1002/anie.201307935 |
[22] |
Jiang, H. Q.; Cao, Z. W.; Schirrmeister, S.; Schiestel, T.; Caro, J. Angew. Chem. Int. Ed. 2010, 49,5656.
doi: 10.1002/anie.v49:33 |
[23] |
Wang, H. H.; Cong, Y.; Yang, W. S. Chem. Commun. 2002, 14,1468.
|
[24] |
Schucker, R. C.; Dimitrakopoulos, G.; Derrickson, K.; KopećK. K.; Alahmadi, F.; Johnson, J. R.; Shao, L.; Ghoniem, A. F. Ind. Eng. Chem. Res. 2019, 58,7989.
doi: 10.1021/acs.iecr.9b00974 |
[25] |
Préz-Ramírez, J.; Vigeland, B. Angew. Chem. Int. Ed. 2005, 44,1112.
doi: 10.1002/anie.v44:7 |
[26] |
Wang, H. B.; Gopalan, S.; Pal, U. B. Electrochim. Acta 2011, 56,6989.
doi: 10.1016/j.electacta.2011.06.009 |
[27] |
Li, W. P.; Cao, Z. W.; Cai, L. L.; Zhang, L. X.; Zhu, X. F.; Yang, W. S. Energy Environ. Sci. 2017, 10,101.
doi: 10.1039/C6EE02967A |
[28] |
Jiang, H. Q.; Wang, H. H.; Werth, S.; Schiestel, T.; Caro, J. Angew. Chem. Int. Ed. 2008, 47,9341.
doi: 10.1002/anie.200803899 |
[29] |
Jiang, H. Q.; Wang, H. H.; Liang, F. Y.; Werth, S.; Schirrmeister, S.; Schiestel, T.; Caro, J. Catal. Today 2010, 156,187.
doi: 10.1016/j.cattod.2010.02.027 |
[30] |
Wu, X.-Y.; Cai, L. L.; Zhu, X. F.; Ghoniem, A. F.; Yang, W. S. J. Adv. Manuf. Process. 2020, 2,e10059.
|
[31] |
Wu, X.-Y.; Ghoniem, A. F.; Uddi, M. AIChE J. 2016, 62,4427.
doi: 10.1002/aic.15518 |
[32] |
Jia, L. J.; He, G. H.; Zhang, Y.; Caro, J.; Jiang, H. Q. Angew. Chem. Int. Ed. 2021, 60,5204.
doi: 10.1002/anie.v60.10 |
[33] |
Fang, W.; Steinbach, F.; Cao, Z. W.; Zhu, X. F.; Feldhoff, A. Angew. Chem. Int. Ed. 2016, 55,8648.
doi: 10.1002/anie.201603528 |
[34] |
Li, W. P.; Zhu, X. F.; Cao, Z. W.; Wang, W. P.; Yang, W. S. Int. J. Hydrogen Energy 2015, 40,3452.
doi: 10.1016/j.ijhydene.2014.10.080 |
[35] |
Liang, W. Y.; Zhou, H. Y.; Caro, J.; Jiang, H. Q. Int. J. Hydrogen Energy 2018, 43,14478.
doi: 10.1016/j.ijhydene.2018.06.008 |
[36] |
Li, W. P.; Zhu, X. F.; Chen, S. G.; Yang, W. S. Angew. Chem. Int. Ed. 2016, 55,8566.
doi: 10.1002/anie.201602207 |
[37] |
Nikolaidis, P.; Poullikkas, A. Renew. Sust. Energ. Rev. 2017, 67,597.
doi: 10.1016/j.rser.2016.09.044 |
[38] |
Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today 2009, 139,244.
doi: 10.1016/j.cattod.2008.08.039 |
[39] |
Dincer, I. Int. J. Hydrogen Energy 2012, 37,1954.
doi: 10.1016/j.ijhydene.2011.03.173 |
[40] |
Liang, W. Y.; Cao, Z. W.; He, G. H.; Caro, J.; Jiang, H. Q. ACS Sustain. Chem. Eng. 2017, 5,8657.
doi: 10.1021/acssuschemeng.7b01305 |
[41] |
Thursfield, A.; Murugan, A.; Franca, R.; Metcalfe, I. S. Energy Environ. Sci. 2012, 5,7421.
doi: 10.1039/c2ee03470k |
[42] |
Kogan, A. Int. J. Hydrogen Energy 1997, 22,481.
doi: 10.1016/S0360-3199(96)00125-5 |
[43] |
Kogan, A. Int. J. Hydrogen Energy 2000, 25,1043.
doi: 10.1016/S0360-3199(00)00024-0 |
[44] |
Steinfeld, A. Sol. Energy 2005, 78,603.
doi: 10.1016/j.solener.2003.12.012 |
[45] |
Miller, J.; Allendorf, M.; Diver, R.; Evans, L.; Siegel, N.; Stuecker, J. J. Mater. Sci. 2008, 43,4714.
doi: 10.1007/s10853-007-2354-7 |
[46] |
Funk, J. Int. J. Hydrogen Energy 2001, 26,185.
doi: 10.1016/S0360-3199(00)00062-8 |
[47] |
Naito, H.; Arashi, H. Solid State Ionics 1995, 79,366.
doi: 10.1016/0167-2738(95)00089-O |
[48] |
Song, S.-J.; Moon, J.-H.; Ryu, H.-W.; Lee, T.-H.; Dorris, S. E.; Balachandran, U. J. Ceram. Process. Res. 2008, 9,123.
|
[49] |
Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. AIChE J. 2017, 63,1278.
doi: 10.1002/aic.v63.4 |
[50] |
Cai, L. L.; Hu, S. Q.; Cao, Z. W.; Li, H. B.; Zhu, X. F.; Yang, W. S. AIChE J. 2019, 65,1088.
doi: 10.1002/aic.v65.3 |
[51] |
Cai, L. L.; Zhu, Y.; Cao, Z. W.; Li, W. P.; Li, H. B.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2020, 594,117463.
doi: 10.1016/j.memsci.2019.117463 |
[52] |
Cai, L. L.; Liu, W.; Cao, Z. W.; Li, H. B.; Cong, Y.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2020, 599,117702.
doi: 10.1016/j.memsci.2019.117702 |
[53] |
Cai, L. L.; Wu, X.-Y.; Zhu, X. F.; Ghoniem, A. F.; Yang, W. S. AIChE J. 2020, 66,e16427.
|
[54] |
Liu, Y. T.; Tan, X. Y.; Li, K. Catal. Rev.-Sci. Eng. 2006, 48,145.
doi: 10.1080/01614940600631348 |
[55] |
Sunarso, J.; Hashim, S. S.; Zhu, N.; Zhou, W. Prog. Energy Combust. Sci. 2017, 61,57.
doi: 10.1016/j.pecs.2017.03.003 |
[56] |
Plazaola, A. A.; Labella, A. C.; Liu, Y. L.; Porras, N. B.; Tanaka, D. A.P.; Van Sint Annaland, M.; Gallucci, F. Processes 2019, 7,128.
doi: 10.3390/pr7030128 |
[57] |
Hashim, S. M.; Mohamed, A. R.; Bhatia, S. Adv. Colloid Interface Sci. 2010, 160,88.
doi: 10.1016/j.cis.2010.07.007 |
[58] |
Zhang, C.; Sunarso, J.; Liu, S. M. Chem. Soc. Rev. 2017, 46,2941.
doi: 10.1039/c6cs00841k pmid: 28436504 |
[59] |
Chen, C. S.; Boukamp, B. A.; Bouwmeester, H. J.M.; Cao, G. Z.; Kruidhof, H.; Winnubst, A. J.A. Solid State Ionics 1995, 76,23.
doi: 10.1016/0167-2738(94)00253-O |
[60] |
Kim, J.; Lin, Y. S. J. Membr. Sci. 2000, 167,123.
doi: 10.1016/S0376-7388(99)00273-2 |
[61] |
Luo, H. X.; Jiang, H. Q.; Efimov, K.; Wang, H. H.; Caro, J. AIChE J. 2011, 57,2738.
doi: 10.1002/aic.v57.10 |
[62] |
Garcia-Fayos, J.; Balaguer, M.; Serra, J. M. ChemSusChem 2015, 8,4242.
doi: 10.1002/cssc.201500951 pmid: 26586419 |
[63] |
Li, W.; Liu, J. J.; Chen, C. S. J. Membr. Sci. 2009, 340,266.
doi: 10.1016/j.memsci.2009.05.052 |
[64] |
Bi, X. X.; Meng, X. X.; Liu, P. Y.; Yang, N. T.; Zhu, Z. H.; Ran, R.; Liu, S. M. J. Membr. Sci. 2017, 522,91.
doi: 10.1016/j.memsci.2016.09.008 |
[65] |
Cao, Z. W.; Zhu, X. F.; Li, W. P.; Xu, B.; Yang, L. N.; Zhu, X. F. Mater. Lett. 2015, 147,88.
doi: 10.1016/j.matlet.2015.02.033 |
[66] |
Zhu, X. F.; Liu, H. Y.; Cong, Y.; Yang, W. S. Chem. Commun. 2012, 48,251.
doi: 10.1039/C1CC16631J |
[67] |
Fang, W.; Gao, J. F.; Chen, C. S. Ceram. Int. 2013, 39,7269.
doi: 10.1016/j.ceramint.2013.02.018 |
[68] |
Wang, Z. T.; Sun, W. P.; Zhu, Z. W.; Liu, T.; Liu, W. ACS Appl. Mater. Interfaces 2013, 5,11038.
doi: 10.1021/am403272z |
[69] |
Luo, H. X.; Efimov, K.; Jiang, H. Q.; Feldhoff, A.; Wang, H. H.; Caro, J. Angew. Chem. Int. Ed. 2011, 50,759.
|
[70] |
Xue, J.; Liao, Q.; Wei, Y. Y.; Li, Z.; Wang, H. H. J. Membr. Sci. 2013, 443,124.
doi: 10.1016/j.memsci.2013.04.067 |
[71] |
Chen, T.; Zhao, H. L.; Xie, Z. X.; Xu, N. S.; Lu, Y. Ionics 2015, 21,1683.
doi: 10.1007/s11581-014-1327-5 |
[72] |
Chen, T.; Zhao, H. L.; Xie, Z. X.; Wang, J.; Lu, Y.; Xu, N. S. J. Power Sources 2013, 223,289.
doi: 10.1016/j.jpowsour.2012.09.018 |
[73] |
Du, Z. H.; Ma, Y. H.; Zhao, H. L.; Li, K.; Lu, Y. J. Membr. Sci. 2019, 574,243.
doi: 10.1016/j.memsci.2018.12.083 |
[74] |
Zhu, X. F.; Yang, W. S. Chin. J. Catal. 2009, 30,801. (in Chinese).
|
( 朱雪峰, 杨维慎, 催化学报, 2009, 30,801.)
|
|
[75] |
Fang, W.; Liang, F. Y.; Cao, Z. W.; Steinbach, F.; Feldhoff, A. Angew. Chem. Int. Ed. 2015, 54,4847.
doi: 10.1002/anie.201411963 |
[76] |
Evdou, A.; Nalbandian, L.; Zaspalis, V. T. J. Membr. Sci. 2008, 325,704.
doi: 10.1016/j.memsci.2008.08.042 |
[77] |
Jiang, H. Q.; Liang, F. Y.; Czuprat, O.; Efimov, K.; Feldhoff, A.; Schirrmeister, S.; Schiestel, T.; Wang, H. H.; Caro, J. Chem 2010, 16,7898.
|
[78] |
Lee, T. H.; Park, C. Y.; Dorris, S. E.; Balachandran, U. ECS Trans. 2008, 13,379.
doi: 10.1149/1.3050408 |
[79] |
Balachandran, U.; Lee, T. H.; Dorris, S. E. Int. J. Hydrogen Energy 2007, 32,451.
doi: 10.1016/j.ijhydene.2006.05.010 |
[80] |
Franca, R. V.; Thursfield, A.; Metcalfe, I. S. J. Membr. Sci. 2012, 389,173.
doi: 10.1016/j.memsci.2011.10.027 |
[81] |
Park, C. Y.; Azzarello, F. V.; Jacobson, A. J. J. Mater. Chem. 2006, 16,3624.
doi: 10.1039/B609872J |
[82] |
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. ECS Trans. 2008, 13,393.
|
[83] |
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. Int. J. Hydrogen Energy 2010, 35,4103.
doi: 10.1016/j.ijhydene.2010.02.025 |
[84] |
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. Int. J. Hydrogen Energy 2013, 38,6450.
doi: 10.1016/j.ijhydene.2013.02.119 |
[85] |
Balachandran, U.; Lee, T. H.; Wang, S.; Dorris, S. E. Int. J. Hydrogen Energy 2004, 29,291.
doi: 10.1016/S0360-3199(03)00134-4 |
[86] |
Hong, J.; Wang, H.; Gopalan, S.; Pal, U. B. ECS Trans. 2008, 6,1.
|
[87] |
Wang, H.; Gopalan, S.; Pal, U. B. Electrochim. Acta 2011, 56,6989.
doi: 10.1016/j.electacta.2011.06.009 |
[88] |
Patrakeev, M. V.; Bahteeva, J. A.; Mitberg, E. B.; Leonidov, I. A.; Kozhevnikov, V. L.; Poeppelmeier, K. R. J. Solid State Chem. 2003, 172,219.
doi: 10.1016/S0022-4596(03)00040-9 |
[89] |
Tsipis, E. V.; Patrakeev, M. V.; Kharton, V. V.; Yaremchenko, A. A.; Mather, G. C.; Shaula, A. L.; Leonidov, I. A.; Kozhevnikov, V. L.; Frade, J. R. Solid State Sci. 2005, 7,355.
doi: 10.1016/j.solidstatesciences.2005.01.001 |
[90] |
Patrakeeva, M. V.; Leonidov, I. A.; Kozhevnikov, V. L.; Kharton, V. V. Solid State Sci. 2004, 6,907.
doi: 10.1016/j.solidstatesciences.2004.05.002 |
[91] |
Leonidov, I. A.; Kozhevnikov, V. L.; Patrakeev, M. V.; Mitberg, E. B.; Poeppelmeier, K. R. Solid State Ionics 2001, 144,361.
doi: 10.1016/S0167-2738(01)00978-X |
[92] |
Kharton, V. V.; Yaremchenko, A. A.; Shaula, A. L.; Viskup, A. P.; Marques, F. M.B.; Frade, J. R.; Naumovich, E. N.; Casanova, J. R.; Marozau, I. P. Defect Diffus. Forum 2004, 226-228,141.
doi: 10.4028/www.scientific.net/DDF.226-228 |
[93] |
Kozhevnikov, V. L.; Leonidov, I. A.; Bahteeva, J. A.; Patrakeev, M. V.; Mitberg, E. B.; Poeppelmeier, K. R. Chem. Mater. 2004, 16,5014.
doi: 10.1021/cm031084o |
[94] |
Fowler, D. E.; Haag, J. M.; Boland, C.; Bierschenk, D. M.; Barnett, S. A.; Poeppelmeier, K. R. Chem. Mater. 2014, 26,3113.
doi: 10.1021/cm500423n |
[95] |
Haag, J. M.; Barnett, S. A.; Richardson Jr., J. W.; Poeppelmeier, K.R. Chem. Mater. 2010, 22,3283.
doi: 10.1021/cm100609e |
[96] |
Yoo, J.; Kim, S.; Choi, H.; Rhim, Y.; Lim, J.; Lee, S.; Jacobson, A. J. J. Electroceram. 2011, 26,56.
doi: 10.1007/s10832-010-9627-2 |
[97] |
Cai, L. L.; Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2016, 520,607.
doi: 10.1016/j.memsci.2016.08.012 |
[98] |
Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2019, 573,370.
doi: 10.1016/j.memsci.2018.12.005 |
[99] |
Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. A. Renew. Sust. Energ. Rev. 2005, 9,255.
doi: 10.1016/j.rser.2004.05.003 |
[100] |
Balat, M. Int. J. Hydrogen Energy 2008, 33,4013.
doi: 10.1016/j.ijhydene.2008.05.047 |
[101] |
Wiltowski, T.; Mondal, K.; Campen, A.; Dasgupta, D.; Konieczny, A. Int. J. Hydrogen Energy 2008, 33,293.
doi: 10.1016/j.ijhydene.2007.07.053 |
[102] |
Schulze-Küppers, F.; Baumann, S.; Meulenberg, W. A.; Stöver, D.; Buchkremer, H.-P. J. Membr. Sci. 2013, 433,121.
doi: 10.1016/j.memsci.2013.01.028 |
[103] |
Kaiser, A.; Foghmoes, S. P.; Pećanac, G.; Malzbender, J.; Chatzichristodoulou, C.; Glasscock, J. A.; Ramachandran, D.; Ni, D. W.; Esposito, V.; Søgaard, M.; Hendriksen, P. V. J. Membr. Sci. 2016, 513,85.
doi: 10.1016/j.memsci.2016.04.016 |
[104] |
Baumann, S.; Schulze-Küppers, F.; Roitsch, S.; Betz, M.; Zwick, M.; Pfaff, E. M.; Meulenberg, W. A.; Mayer, J.; Stöver, D. J. Membr. Sci. 2010, 359,102.
doi: 10.1016/j.memsci.2010.02.002 |
[105] |
Unije, U.; Mücke, R.; Niehoff, P.; Baumann, S.; Vaßen, R.; Guillon, O. J. Membr. Sci. 2017, 524,334.
doi: 10.1016/j.memsci.2016.10.037 |
[106] |
Schulze-Küppersa, F.; Unije, U. V.; Blank, H.; Balaguer, M.; Baumann, S.; Mücke, R.; Meulenberg, W. A. J. Membr. Sci. 2018, 564,218.
doi: 10.1016/j.memsci.2018.07.028 |
[107] |
Cai, L. L.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. Green Chem. Eng. doi. org/10. 1016/j.gce.2020.11.003.
|
[108] |
Zhu, N.; Dong, X. L.; Liu, Z. K.; Zhang, G. R.; Jin, W. Q.; Xu, N. P. Chem. Commun. 2012, 48,7137.
doi: 10.1039/c2cc30184a |
[109] |
Zhou, H. Y.; Liang, W. Y.; Liang, F. Y.; Jiang, H. Q. Catal. Today 2019, 331,2.
doi: 10.1016/j.cattod.2017.09.004 |
[110] |
Li, W. P.; Cao, Z. W.; Li, H. B.; Zhu, X. F.; Yang, W. S. Int. J. Hydrogen Energy 2019, 44,4218.
doi: 10.1016/j.ijhydene.2018.12.182 |
[1] | 李雅宁, 王晓艳, 唐勇. 自由基聚合的立体选择性调控★[J]. 化学学报, 2024, 82(2): 213-225. |
[2] | 崔国庆, 胡溢玚, 娄颖洁, 周明霞, 李宇明, 王雅君, 姜桂元, 徐春明. CO2加氢制醇类催化剂的设计制备及性能研究进展[J]. 化学学报, 2023, 81(8): 1081-1100. |
[3] | 付信朴, 王秀玲, 王伟伟, 司锐, 贾春江. 团簇Au/CeO2的制备及其催化CO氧化反应构效关系的研究★[J]. 化学学报, 2023, 81(8): 874-883. |
[4] | 刘建川, 李翠艳, 刘耀祖, 王钰杰, 方千荣. 高稳定二维联咔唑sp2碳共轭共价有机框架材料用于高效电催化氧还原★[J]. 化学学报, 2023, 81(8): 884-890. |
[5] | 赵天成, 蒋鸿宇, 张琨, 徐一帆, 康欣悦, 胥鉴宸, 周旭峰, 陈培宁, 彭慧胜. 基于环烷烃/乙醇混合碳源高性能碳纳米管纤维的连续化制备[J]. 化学学报, 2023, 81(6): 565-571. |
[6] | 王子豪, 陈敏, 陈昶乐. 不对称α-二亚胺镍催化制备聚烯烃弹性体★[J]. 化学学报, 2023, 81(6): 559-564. |
[7] | 刘露杰, 张建, 王亮, 肖丰收. 生物质基多元醇的多相催化选择性氢解★[J]. 化学学报, 2023, 81(5): 533-547. |
[8] | 徐斌, 韦秀芝, 孙江敏, 刘建国, 马隆龙. 原位合成氮掺杂石墨烯负载钯纳米颗粒用于催化香兰素高选择性加氢反应[J]. 化学学报, 2023, 81(3): 239-245. |
[9] | 刘健, 欧金花, 李泽平, 蒋婧怡, 梁荣涛, 张文杰, 刘开建, 韩瑜. 金属-有机骨架衍生的Co单原子高效催化硝基芳烃氢化还原[J]. 化学学报, 2023, 81(12): 1701-1707. |
[10] | 杨贯文, 伍广朋. 模块化双功能有机硼氮和硼磷催化体系的设计及其催化转化★[J]. 化学学报, 2023, 81(11): 1551-1565. |
[11] | 刘金晶, 杨娜, 李莉, 魏子栋. 铂活性位空间结构调控氧还原机理的理论研究★[J]. 化学学报, 2023, 81(11): 1478-1485. |
[12] | 李波, 周海燕, 马海燕, 黄吉玲. 亚乙基桥联双茚锆、铪配合物的合成及催化丙烯选择性齐聚研究: 茚环3-位取代基的影响[J]. 化学学报, 2023, 81(10): 1280-1294. |
[13] | 陈治平, 孟永乐, 芦静, 周文武, 杨志远, 周安宁. Fe@Si/S-34催化剂的制备及其合成气制烯烃性能[J]. 化学学报, 2023, 81(1): 14-19. |
[14] | 田钊炜, 达伟民, 王雷, 杨宇森, 卫敏. 第二代生物柴油制备的多相催化剂的结构设计及研究进展[J]. 化学学报, 2022, 80(9): 1322-1337. |
[15] | 张爽, 杨成飞, 杨玉波, 冯宁宁, 杨刚. 基于废旧锂电池回收制备LixMO (x=0.79, 0.30, 0.08; M=Ni/Co/Mn)材料作为锂-氧气电池正极催化剂的电化学性能研究[J]. 化学学报, 2022, 80(9): 1269-1276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||