化学学报 ›› 2022, Vol. 80 ›› Issue (8): 1084-1090.DOI: 10.6023/A22040143 上一篇 下一篇
研究论文
投稿日期:
2022-04-01
发布日期:
2022-09-01
通讯作者:
何传新, 江海龙
基金资助:
Shaobing Yana, Long Jiaoa, Chuanxin Heb(), Hailong Jianga()
Received:
2022-04-01
Published:
2022-09-01
Contact:
Chuanxin He, Hailong Jiang
Supported by:
文章分享
燃料电池阴极氧还原(ORR)催化剂目前主要以商业Pt/C为主, 其高成本和稀缺性极大地限制了燃料电池的广泛应用. 为了替代Pt/C催化剂, 廉价高效的非贵金属催化剂目前受到了广泛的研究和关注. 利用氧化石墨烯(GO)为诱导模板, 借助表面丰富的含氧官能团, 实现了Co基金属有机框架材料(MOF) (ZIF-67)在GO表面的原位生长, 构筑了ZIF-67/GO层状复合材料. 热解过程中, 石墨烯的存在有效抑制了Co纳米颗粒的团聚, 并且很好地维持了原始的层状结构. 最终获得的Co@N-C/rGO复合催化剂材料实现了活性位的高度分散, 并且具有丰富的孔结构和优异的导电性能. 在电化学性能测试中Co@N-C/rGO表现出优异的ORR性能, 其起始电位为0.96 V, 半波电位0.83 V, 远优于ZIF-67直接热解得到的Co@N-C材料, 且性能与商业Pt/C催化剂相当. 此外, Co@N-C/rGO复合催化剂还表现出良好的催化稳定性和甲醇耐受性, 显示出该材料作为燃料电池氧还原催化剂的重要潜力.
闫绍兵, 焦龙, 何传新, 江海龙. ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原[J]. 化学学报, 2022, 80(8): 1084-1090.
Shaobing Yan, Long Jiao, Chuanxin He, Hailong Jiang. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction[J]. Acta Chimica Sinica, 2022, 80(8): 1084-1090.
[1] |
Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. EnergyChem 2020, 2, 100027.
doi: 10.1016/j.enchem.2020.100027 |
[2] |
Tang, C.; Wang, H.-F.; Zhang, Q. Acc. Chem. Res. 2018, 51, 881.
doi: 10.1021/acs.accounts.7b00616 |
[3] |
Xu, H.; Cheng, D.; Cao, D.; Zeng, X. Nat. Catal. 2018, 1, 339.
doi: 10.1038/s41929-018-0063-z |
[4] |
He, C.; Wu, Q.-J.; Mao, M.-J.; Zou, Y.-H.; Liu, B.-T.; Huang, Y.-B.; Cao, R. CCS Chem. 2020, 2, 2368.
|
[5] |
Yang, Z.; Yang, H.; Shang, L.; Zhang, T. Angew. Chem., Int. Ed. 2022, 61, e202113278.
|
[6] |
Yi, J.-D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K.-T.; Luo, J.; Liang, Y.-L.; Huang, Y.-B.; Cao, R. ACS Energy Lett. 2018, 3, 883.
doi: 10.1021/acsenergylett.8b00245 |
[7] |
Zhang, H.; Xia, W.; Shen, H.; Guo, W.; Liang, Z.; Zhang, K.; Wu, Y.; Zhu, B.; Zou, R. Angew. Chem., Int. Ed. 2020, 59, 1871.
|
[8] |
Zhang, J.; Dai, L. ACS Catal. 2015, 5, 7244.
|
[9] |
Jia, Y.; Xue, Z.; Yang, J.; Liu, Q.; Xian, J.; Zhong, Y.; Sun, Y.; Zhang, X.; Liu, Q.; Yao, D.; Li, G. Angew. Chem., Int. Ed. 2022, 61, e202110838.
|
[10] |
Han, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; Zhang, Q; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2021, 60, 119262.
|
[11] |
Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2022, 61, e202117347.
|
[12] |
Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; Ma, J. Y.; Lin, F.; Su, D.; Lu, G.; Guo, S. Nature 2019, 574, 81.
doi: 10.1038/s41586-019-1603-7 |
[13] |
Dou, S.; Tao, L.; Huo, J.; Wang, S.; Dai, L. Energy Environ. Sci. 2016, 9, 1320.
doi: 10.1039/C6EE00054A |
[14] |
Chen, X.; Ma, D.-D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X.-T.; Zhu, Q.-L. Appl. Catal. B 2020. 267, 118720.
doi: 10.1016/j.apcatb.2020.118720 |
[15] |
Lu, X.; Xia, B.; Zang, S.-Q.; Lou, X. Angew. Chem., Int. Ed. 2020, 59, 4634.
doi: 10.1002/anie.201910309 |
[16] |
Xiong, W.; Li, H.; You, H.; Cao, M.; Cao, R. Natl. Sci. Rev. 2020, 7, 609.
doi: 10.1093/nsr/nwz166 |
[17] |
Shan, Y.; Chen, L.; Pang, H.; Xu, Q. Small Struct. 2020, 2, 2000078.
doi: 10.1002/sstr.202000078 |
[18] |
He, C.; Liang, J.; Zou, Y.-H.; Yi, J.-D.; Huang, Y.-B.; Cao, R. Natl. Sci. Rev. 2021, DOI: 10.1093/nsr/nwab157.
doi: 10.1093/nsr/nwab157 |
[19] |
Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W; Mao, J.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Adv. Mater. 2018, 30, e1800396.
|
[20] |
Jiao, L.; Yang, W.; Wan, G.; Zhang, R.; Zheng, X.; Zhou, H.; Yu, S.-H.; Jiang, H.-L. Angew. Chem., Int. Ed. 2020, 59, 20589.
doi: 10.1002/anie.202008787 |
[21] |
Wang, Y.; Huang, N.-Y.; Shen, J.-Q.; Liao, P.-Q.; Chen, X.-M.; Zhang, J.-P. J. Am. Chem. Soc. 2018, 140, 38.
doi: 10.1021/jacs.7b10107 pmid: 29258308 |
[22] |
Jiao, L.; Zhou, Y.-X.; Jiang, H.-L. Chem. Sci. 2016, 7, 1690.
doi: 10.1039/C5SC04425A |
[23] |
Wu, Q.; Zhang, C.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
doi: 10.6023/A20050141 |
(吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
doi: 10.6023/A20050141 |
|
[24] |
Sun, T.; Li, Y.; Cui, T.; Xu, L.; Wang, Y.-G.; Chen, W.; Zhang, P.; Zheng, T.; Fu, X.; Zhang, S.; Zhang, Z.; Wang, D.; Li, Y. Nano Lett. 2020, 20, 6206.
doi: 10.1021/acs.nanolett.0c02677 |
[25] |
Ding, D.; Shen, K.; Chen, X.; Chen, H.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 7879.
doi: 10.1021/acscatal.8b02504 |
[26] |
Yuan, S.; Zhang, J.; Hu, L.; Li, J.; Li, S.; Gao, Y.; Zhang, Q.; Gu, L.; Yang, W.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2021, 60, 21685.
doi: 10.1002/anie.202107053 |
[27] |
Wang, Y.; Waterhouse, G.; Shang, L.; Zhang, T. Adv. Energy Mater. 2020, 11, 2003323.
doi: 10.1002/aenm.202003323 |
[28] |
Hu, L.; Li, W.; Wang, L.; Wang, B. EnergyChem 2021, 3, 100056.
doi: 10.1016/j.enchem.2021.100056 |
[29] |
Hwang, E. H.; Adam, S.; Sarma, S. Phys. Rev. Lett. 2007, 98, 186806.
doi: 10.1103/PhysRevLett.98.186806 |
[30] |
Xue, Z.; Li, Y.; Zhang, Y.; Geng, W.; Jia, B.; Tang, J.; Bao, S.; Wang, H.-P.; Fan, Y.; Wei, Z.-W.; Zhang, Z.; Ke, Z.; Li, G.; Su, C.-Y. Adv. Energy Mater. 2018, 8, 1801564.
doi: 10.1002/aenm.201801564 |
[31] |
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tuntuc, E; Banerjee, S.; Colombo, L.; Ruoff, R. Science 2009, 324, 1312.
doi: 10.1126/science.1171245 |
[32] |
Wang, X.-S.; Yang, X.; Chen, C.-H.; Li, H.-F.; Huang, Y.-B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese)
doi: 10.6023/A21100455 |
(王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.)
doi: 10.6023/A21100455 |
|
[33] |
Stankovich, S.; Dikin, D; Dommett, G; Kohlhaas, K; Zimney, E.; Stach, E; Piner, R; Nguyen, S.; Ruoff, R. Nature 2006, 442, 282.
doi: 10.1038/nature04969 |
[34] |
Stoller, M.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. Nano Lett. 2008, 8, 3498.
doi: 10.1021/nl802558y pmid: 18788793 |
[35] |
Liu, S.; Zhang, H.; Zhao, Q.; Zhang, X.; Liu, R.; Ge, X.; Wang, G.; Zhao, H.; Cai, W. Carbon 2016, 106, 74.
doi: 10.1016/j.carbon.2016.05.021 |
[36] |
Chen, K.; Sun, Z.; Fang, R.; Shi, Y.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2018, 28, 1707592.
doi: 10.1002/adfm.201707592 |
[37] |
Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Adv. Funct. Mater. 2018, 28, 1804950.
doi: 10.1002/adfm.201804950 |
[38] |
Zhang, Z.; Ge, C.; Chen, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese)
doi: 10.6023/A18080323 |
(张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.)
doi: 10.6023/A18080323 |
|
[39] |
Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J.; Gu, L.; Zhao, H.; Li, Y.; Wang, D. Nature Chem. 2018, 10, 924.
doi: 10.1038/s41557-018-0100-1 |
[40] |
Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S.-Z. Adv. Energy Mater. 2020, 10, 2000789.
doi: 10.1002/aenm.202000789 |
[41] |
Cheon, J.; Kim, K.; Sa, Y.; Sahgong, S.; Hong, Y.; Woo, J.; Yim, S.; Jeong, H. Y.; Kim, Y.; Joo, S. Adv. Energy Mater. 2016, 6, 1501794.
doi: 10.1002/aenm.201501794 |
[42] |
Jiang, M.; Fu, C.; Cheng, R.; Zhang, W.; Liu, T.; Wang, R.; Zhang, J.; Sun, B. Adv. Sci. 2020, 7, 2000747.
doi: 10.1002/advs.202000747 |
[43] |
Han, H.; Wang, Y.; Zhang, Y.; Cong, Y.; Qin, J.; Gao, R.; Chai, C.; Song, Y. Acta Phys.-Chim. Sin. 2021, 37, 2008017. (in Chinese)
|
(韩洪仨, 王彦青, 张云龙, 丛媛媛, 秦嘉琪, 高蕊, 柴春晓, 宋玉江, 物理化学学报, 2021, 37, 2008017.)
|
|
[44] |
Yi, J.; Li, Q.; Chi, S; Huang, Y.; Cao, R. Chem. Res. Chin. Univ. 2022, 38, 141.
doi: 10.1007/s40242-021-1384-z |
[45] |
Zhang, M.-D.; Yi, J.-D,; Huang, Y.-B.; Cao, R. Chin. J. Struct. Chem. 2021, 40, 1213.
|
[1] | 李珊, 路俊欣, 刘杰, 蒋绿齐, 易文斌. 氟烷基亚磺酸钠盐电化学合成α-氟烷基酮[J]. 化学学报, 2024, 82(2): 110-114. |
[2] | 李萍, 杨琪玉, 曾婧, 张然, 陈秋燕, 闫飞. 氟掺杂对可逆固体氧化物电池性能的影响及相关动力学研究[J]. 化学学报, 2024, 82(1): 36-45. |
[3] | 刘建川, 李翠艳, 刘耀祖, 王钰杰, 方千荣. 高稳定二维联咔唑sp2碳共轭共价有机框架材料用于高效电催化氧还原★[J]. 化学学报, 2023, 81(8): 884-890. |
[4] | 孙博, 琚雯雯, 王涛, 孙晓军, 赵婷, 卢晓梅, 陆峰, 范曲立. 高分散共轭聚合物-金属有机框架纳米立方体的制备及抗肿瘤应用[J]. 化学学报, 2023, 81(7): 757-762. |
[5] | 宁聪聪, 杨倩, 毛阿敏, 唐梓嘉, 金燕, 胡宝山. 石墨烯纳米带的可控制备研究进展[J]. 化学学报, 2023, 81(4): 406-419. |
[6] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
[7] | 杨镇鸿, 干晓娟, 王书哲, 段君元, 翟天佑, 刘友文. 金属性Ni3N纳米粒子的制备与乙二醇电氧化性能★[J]. 化学学报, 2023, 81(11): 1471-1477. |
[8] | 刘稳, 王昱捷, 杨慧琴, 李成杰, 吴娜, 颜洋. 离子液体非共价诱导制备碳纳米管/石墨烯集流体用于钠金属负极[J]. 化学学报, 2023, 81(10): 1379-1386. |
[9] | 齐志豪, 高福杰, 周常楷, 曾誉, 吴强, 杨立军, 王喜章, 胡征. 氮掺杂碳纳米笼固载钌纳米粒子的费托合成性能[J]. 化学学报, 2022, 80(8): 1100-1105. |
[10] | 何家伟, 焦柳, 程雪怡, 陈光海, 吴强, 王喜章, 杨立军, 胡征. 金属有机框架衍生的空心碳纳米笼的结构调控与锂硫电池性能研究[J]. 化学学报, 2022, 80(7): 896-902. |
[11] | 蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪. 富晶格位错的多孔铋纳米花高效电还原二氧化碳制甲酸盐※[J]. 化学学报, 2022, 80(6): 703-707. |
[12] | 王丹, 封波, 张晓昕, 刘亚楠, 裴燕, 乔明华, 宗保宁. 基于热解ZIF-8的氮掺杂碳电化学氧还原合成过氧化氢催化剂[J]. 化学学报, 2022, 80(6): 772-780. |
[13] | 耿元昊, 林小秋, 孙亚昕, 李惠雨, 秦悦, 李从举. 双金属导电金属有机框架材料Ni/Co-CAT的制备及其氧还原催化性能研究[J]. 化学学报, 2022, 80(6): 748-755. |
[14] | 应霞薇, 浮建军, 曾敏, 刘文, 张天宇, 沈培康, 张信义. 基于BiOCl-Fe2O3@TiO2介孔复合材料的光电化学合成氨性能研究[J]. 化学学报, 2022, 80(4): 503-509. |
[15] | 李泽洋, 杨宇森, 卫敏. 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022, 80(2): 199-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||