化学学报 ›› 2023, Vol. 81 ›› Issue (2): 124-130.DOI: 10.6023/A22110472 上一篇    下一篇

研究论文

多共振热激活延迟荧光过程的理论研究

张少秦a, 李美清b, 周中军a,*(), 曲泽星a,*()   

  1. a 吉林大学化学学院 理论化学研究所 长春 130023
    b 吉林省计算中心 长春 130012
  • 投稿日期:2022-11-24 发布日期:2023-01-10
  • 通讯作者: 周中军, 曲泽星
  • 基金资助:
    国家自然科学基金面上项目(21873036)

Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process

Shaoqin Zhanga, Meiqing Lib, Zhongjun Zhoua(), Zexing Qua()   

  1. a Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
    b The Computing Center of Jilin Province, Changchun 130012, China
  • Received:2022-11-24 Published:2023-01-10
  • Contact: Zhongjun Zhou, Zexing Qu
  • Supported by:
    National Natural Science Foundation of China for the General Program(21873036)

本工作借助第一性原理和动力学演化, 系统地研究了四个叔丁基-咔唑及吩噻嗪取代的硼-氮化合物(BCz-BN、2PTZ-BN、Cz-PTZ-BN和2Cz-PTZ-BN)的多共振热激活延迟荧光的高效发光机制. 结果表明上述分子T1与T2间的内转换速率远大于其它辐射与非辐射速率, 同时T2到S1的反向系间窜越速率也高于T1到S1的反向系间窜越速率, 因此其多共振热激活延迟荧光过程应遵循T1→T2→S1→S0的路径. 进一步动力学演化表明, T1与T2之间的内转换主要发生在演化初期, 随着时间的推移, 能量逐渐由T2向S1转移, 并最终在S1完成荧光发射. 上述研究揭示了多共振延迟荧光的微观本质, 为未来设计及合成新的多共振热激活延迟荧光分子提供了理论依据.

关键词: 光致发光, 多共振热激活延迟荧光, 密度泛函理论, 激发态, 旋轨耦合, 反向系间窜越

In recent years, the multiple resonance thermally activated delayed fluorescence (MR-TADF) has become a hot topic due to the high fluorescence quantum yield and small Stokes shift. In traditional TADF molecules, the lowest triplet excited state (T1) can convert into the lowest singlet excited state (S1) through the reverse intersystem crossing (RISC), and then return to the ground state (S0) by the radiative fluorescence emission. However, recent studies found that in MR-TADF molecules, the higher triplet excited state (T2) might play an important role. Thus, the detailed mechanism for the luminescence in MR-TADF molecules, especially for the effect of higher triplet excited state, has still been an indefinite problem. In this work, the luminescence mechanism of four newly reported MR-TADF molecules (BCz-BN, 2PTZ-BN, CZ-PTZ-BN and 2Cz-PTZ-BN) which are substituted by tert-butyl-carbazole and phenothiazine groups has been systematically investigated by the first-principle calculation and kinetic time evolution. The results showed that the phenothiazine group can significantly increase the spin-orbit coupling (SOC) and increase the fluorescence quantum yield. More importantly, by computing the rate constants for the TADF process, we found that the internal conversion (IC) rate between two triplet excited states (T1 and T2) is much faster than the radiative and non-radiative rates, and meanwhile the rate of the reverse intersystem crossing of T2→S1 is also faster than the one of T1→S1. Therefore, the TADF process of the above molecules should follow the T1→T2→S1→S0 process. The above findings were also confirmed by the further kinetic time evolution. In the early stage, the system was mainly dominated by the internal conversion between T1 and T2. With the time evolution, the energy gradually transferred from T2 to S1, and finally emitted fluorescence on S1. However, if T2 is not involved in the time evolution, the TADF process will be significantly slowed down, which could further confirm the importance of T2 in the TADF process. This work reveals the nature of the TADF process which could be of great importance for designing and synthesizing new TADF molecules.

Key words: photoluminescence, multiple resonance thermally activated delayed fluorescence, density functional theory, excited state, spin-orbit coupling, reverse intersystem crossing