化学学报 ›› 2023, Vol. 81 ›› Issue (12): 1687-1694.DOI: 10.6023/A23060283 上一篇 下一篇
研究论文
黄艳琴a,*(), 栗丽君a, 杨书培a, 张瑞a,c,*(), 刘兴奋a, 范曲立a, 黄维a,b,*()
投稿日期:
2023-06-10
发布日期:
2023-09-18
基金资助:
Yanqin Huanga(), Lijun Lia, Shupei Yanga, Rui Zhanga,c(), Xingfen Liua, Quli Fana, Wei Huanga,b()
Received:
2023-06-10
Published:
2023-09-18
Contact:
*E-mail: Supported by:
文章分享
本工作构建了一种新型复合纳米诊疗剂HA-AuNPs/FDF, 用于透明质酸酶(HAase)的高灵敏荧光检测、肿瘤靶向荧光成像和光动力/光热协同治疗. 吡咯并吡咯二酮基共轭小分子(FDF)与肿瘤靶向生物分子透明质酸(HA)功能化的金纳米粒子(HA-AuNPs)通过静电作用自组装形成HA-AuNPs/FDF. FDF在近红外光激发下产生较强的荧光, HA-AuNPs会通过荧光共振能量转移效应(FRET)猝灭FDF的荧光. 然而, 肿瘤细胞中过表达的透明质酸酶(HAase)能使HA逐渐降解, FDF被释放, 从而荧光逐渐恢复. HA-AuNPs/FDF的荧光恢复程度与HAase的浓度有很好的线性关系, 可用于快速定量检测HAase. 而且, HA-AuNPs/FDF作为透明质酸酶激活的荧光探针成功地用于人宫颈癌肿瘤HeLa细胞的靶向荧光成像, 细胞实验结果证实它能通过光动力/光热协同治疗有效抑制HeLa细胞的增殖. 该体系为实现精准高效的肿瘤诊疗拓展了思路.
黄艳琴, 栗丽君, 杨书培, 张瑞, 刘兴奋, 范曲立, 黄维. HA-AuNPs/FDF用于透明质酸酶的高灵敏检测、肿瘤靶向细胞荧光成像和光疗[J]. 化学学报, 2023, 81(12): 1687-1694.
Yanqin Huang, Lijun Li, Shupei Yang, Rui Zhang, Xingfen Liu, Quli Fan, Wei Huang. HA-AuNPs/FDF for Highly Sensitive Detection of Hyaluronidase, Tumor-targeting Fluorescence Cell Imaging and Phototherapy[J]. Acta Chimica Sinica, 2023, 81(12): 1687-1694.
检测方法 | 线性范围/(U•mL−1) | 检测限/(U•mL−1) | 文献 |
---|---|---|---|
比色法 | 0~240 | 24 | [ |
酶谱法 | 0.625~5 | 0.625 | [ |
荧光法 | 0.01~10 | 0.004 | [ |
荧光法 | 0.05~2 | 0.02 | [ |
荧光法 | 0~1.3 | 0.075 | [ |
荧光法 | 0.5~100 | 0.14 | [ |
荧光法 | 1.25~50 | 0.63 | [ |
荧光法 | 0.25~2.25 | 0.04 | 本文 |
检测方法 | 线性范围/(U•mL−1) | 检测限/(U•mL−1) | 文献 |
---|---|---|---|
比色法 | 0~240 | 24 | [ |
酶谱法 | 0.625~5 | 0.625 | [ |
荧光法 | 0.01~10 | 0.004 | [ |
荧光法 | 0.05~2 | 0.02 | [ |
荧光法 | 0~1.3 | 0.075 | [ |
荧光法 | 0.5~100 | 0.14 | [ |
荧光法 | 1.25~50 | 0.63 | [ |
荧光法 | 0.25~2.25 | 0.04 | 本文 |
[1] |
Lapcik, L.; Lapcik, L.; De Smedt, S.; Demeester, J.; Chabrecek, P. Chem. Rev. 1998, 98, 2663.
doi: 10.1021/cr941199z |
[2] |
Toole, B. P. Nat. Rev. Cancer 2004, 4, 528.
doi: 10.1038/nrc1391 |
[3] |
Xie, H. F.; Zeng, F.; Wu, S. Z. Biomacromolecules 2014, 15, 3383.
doi: 10.1021/bm500890d |
[4] |
Lokeshwar, V. B.; Estrella, V.; Lopez, L.; Kramer, M.; Gomez, P.; Soloway, M. S.; Lokeshwar, B. L. Cancer Res. 2006, 66, 11219.
pmid: 17145867 |
[5] |
Kolliopoulos, C.; Bounias, D.; Bouga, H.; Kyriakopoulou, D.; Stavropoulos, M.; Vynios, D. H. J. Pharm. Biomed. Anal. 2013, 83, 299.
doi: 10.1016/j.jpba.2013.05.037 pmid: 23777618 |
[6] |
Eissa, S.; Shehata, H.; Mansour, A.; Esmat, M.; El-Ahmady, O. Med. Oncol. 2012, 29, 3345.
doi: 10.1007/s12032-012-0295-8 |
[7] |
Nossier, A. I.; Eissa, S.; Ismail, M. F.; Hamdy, M. A.; Azzazy, H. M. Biosens. Bioelectron. 2014, 54, 7.
doi: 10.1016/j.bios.2013.10.024 |
[8] |
Martinez-Quintanilla, J.; He, D.; Wakimoto, H.; Alemany, R.; Shah, K. Mol. Ther. 2015, 23, 108.
doi: 10.1038/mt.2014.204 pmid: 25352242 |
[9] |
Ge, M. H.; Sun, J. J.; Chen, M. L.; Tian, J. J.; Yin, H. C.; Yin, J. Anal. Bioanal. Chem. 2020, 412, 1915.
doi: 10.1007/s00216-020-02443-9 |
[10] |
Diferrante, N. J. Biol. Chem. 1956, 220, 303.
doi: 10.1016/S0021-9258(18)65354-2 |
[11] |
Vercruysse, K. P.; Lauwers, A. R.; Demeester, J. M. Biochem. J. 1995, 306, 153.
doi: 10.1042/bj3060153 |
[12] |
Magalhaes, M. R.; da Silva, N. J.; Ulhoa, C. J. Toxicon 2008, 51, 1060.
doi: 10.1016/j.toxicon.2008.01.008 |
[13] |
Jayadev, C.; Rout, R.; Price, A.; Hulley, P.; Mahoney, D. J. Immunol. Methods 2012, 386, 22.
doi: 10.1016/j.jim.2012.08.012 |
[14] |
Carter, K. P.; Young, A. M.; Palmer, A. E. Chem. Rev. 2014, 114, 4564.
doi: 10.1021/cr400546e pmid: 24588137 |
[15] |
Chen, C.; Tian, R.; Zeng, Y.; Chu, C.; Liu, G. Bioconjug. Chem. 2020, 31, 276.
doi: 10.1021/acs.bioconjchem.9b00734 |
[16] |
Cheng, D.; Han, W. Y.; Yang, K. C.; Song, Y.; Jiang, M. D.; Song, E. Q. Talanta 2014, 130, 408.
doi: 10.1016/j.talanta.2014.07.005 pmid: 25159428 |
[17] |
Huang, Y. Q.; Song, C. X.; Li, H. C.; Zhang, R.; Jiang, R. C.; Liu, X. F.; Zhang, G. W.; Fan, Q. L.; Wang, L. H.; Huang, W. ACS Appl. Mater. Interfaces 2015, 7, 21529.
doi: 10.1021/acsami.5b06799 |
[18] |
Li, X. Q.; Zhou, Z.; Tang, Y. P.; Zhang, C. C.; Zheng, Y. H.; Gao, J. W.; Wang, Q. M. Sens. Actuators 2018, 276, 95.
doi: 10.1016/j.snb.2018.08.093 |
[19] |
Ge, J.; Cai, R.; Yang, L.; Zhang, L. L.; Jiang, Y.; Yang, Y.; Cui, C.; Wan, S.; Chu, X.; Tan, W. H. ACS Sustainable Chem. Eng. 2018, 6, 16555.
doi: 10.1021/acssuschemeng.8b03684 |
[20] |
Zhang, Z.; Xu, W.; Kang, M.; Wen, H.; Guo, H.; Zhang, P.; Xi, L.; Li, K.; Wang, L.; Wang, D.; Tang, B. Z. Adv. Mater. 2020, 32, 2003210.
doi: 10.1002/adma.v32.36 |
[21] |
Pan, L. X.; Huang, Y. Q.; Sheng, K.; Zhang, R.; Fan, Q. L.; Huang, W. Acta Chim. Sinica 2021, 79, 1097 (in Chinese).
doi: 10.6023/A21050219 |
(潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维, 化学学报, 2021, 79, 1097.)
doi: 10.6023/A21050219 |
|
[22] |
Gao, D.; Guo, X.; Zhang, X.; Chen, S.; Wang, Y.; Chen, T.; Huang, G.; Gao, Y.; Tian, Z.; Yang, Z. Mater. Today Bio. 2020, 5, 100035.
|
[23] |
Wang, M.; Yan, D.; Wang, M.; Wu, Q.; Song, R.; Huang, Y.; Rao, J.; Wang, D.; Zhou, F.; Tang, B. Z. Adv. Funct. Mater. 2022, 32, 2205371.
doi: 10.1002/adfm.v32.36 |
[24] |
Xu, C.; Pu, K. Chem. Soc. Rev. 2021, 50, 1111.
doi: 10.1039/D0CS00664E |
[25] |
Huang, Y. Q.; Sun, L. J.; Zhang, R. ACS Appl. Bio. Mater. 2019, 2, 2421.
doi: 10.1021/acsabm.9b00130 |
[26] |
Huang, Y. Q.; Liu, K. L.; Ni, H. L.; Zhang, R.; Liu, X. F.; Fan, Q. L.; Wang, L. H.; Huang, W. ACS Appl. Polym. Mater. 2022, 4, 7739.
doi: 10.1021/acsapm.2c01297 |
[27] |
Liu, B. D.; Wang, C. J.; Qian, Y. Acta Chim. Sinica 2022, 80, 1071 (in Chinese).
doi: 10.6023/A22040141 |
(刘巴蒂, 王承俊, 钱鹰, 化学学报, 2022, 80, 1071.)
doi: 10.6023/A22040141 |
|
[28] |
Li, Y. R.; Wang, Z. G.; Tang, Z. H. Acta Chim. Sinica 2022, 80, 291 (in Chinese).
doi: 10.6023/A21120544 |
(李嫣然, 王子贵, 汤朝晖, 化学学报, 2022, 80, 291.)
doi: 10.6023/A21120544 |
|
[29] |
Xia, Q.; Chen, Z.; Zhou, Y.; Liu, R. Nanotheranostics 2019, 3, 156.
doi: 10.7150/ntno.33536 pmid: 31008024 |
[30] |
Wang, T.; Zhao, L.; Wang, K. W.; Bai, Y. F.; Feng, F. Acta Chim. Sinica 2021, 79, 600 (in Chinese).
doi: 10.6023/A20120578 |
(王涛, 赵璐, 王科伟, 白云峰, 冯锋, 化学学报, 2021, 79, 600.)
doi: 10.6023/A20120578 |
|
[31] |
Sun, Y.; Wang, Y.; Liu, Y.; Weng, B.; Yang, H.; Xiang, Z.; Ran, J.; Wang, H.; Yang, C. ACS Appl. Mater. Interfaces 2021, 13, 53646.
doi: 10.1021/acsami.1c17642 |
[32] |
Song, Y.; Wang, Z.; Li, L.; Shi, W.; Li, X.; Ma, H. Chem. Commun. 2014, 50, 15696.
doi: 10.1039/C4CC07565J |
[33] |
Wu, Z. S.; Zhang, S. B.; Guo, M. M.; Chen, C. R.; Shen, G. L.; Yu, R. Q. Anal. Chim. Acta 2007, 584, 122.
doi: 10.1016/j.aca.2006.11.003 |
[34] |
Matsui, J.; Akamatsu, K.; Nishiguchi, S.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Anal. Chem. 2004, 76, 1310.
pmid: 14987086 |
[35] |
Zhu, M. Q.; Wang, L. Q.; Exarhos, G. J.; Li, A. D. J. Am. Chem. Soc. 2004, 126, 2656.
doi: 10.1021/ja038544z |
[36] |
Wu, K.; Zhao, H. H.; Sun, Z. Q.; Wang, B.; Tang, X. Y.; Dai, Y. N.; Li, M. X.; Shen, Q. M.; Zhang, H.; Fan, Q. L.; Huang, W. Theranostics 2019, 9, 7697.
doi: 10.7150/thno.38565 |
[37] |
Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Acc. Chem. Res. 2008, 41, 1721.
doi: 10.1021/ar800035u |
[38] |
Joris, F.; Manshian, B. B.; Peynshaert, K.; De Smedt, S. C.; Braeckmans, K.; Soenen, S. J. Chem. Soc. Rev. 2013, 42, 8339.
doi: 10.1039/c3cs60145e |
[1] | 车飞达, 赵晓茗, 张馨, 丁琪, 王昕, 李平, 唐波. 抑郁症相关活性分子的荧光成像★[J]. 化学学报, 2023, 81(9): 1255-1264. |
[2] | 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英. 喹啉基粘度荧光探针的合成及其检测应用[J]. 化学学报, 2023, 81(8): 905-911. |
[3] | 吕鑫, 吴仪, 张勃然, 郭炜. 过氧化氢激活型近红外氟硼二吡咯光敏剂的设计、合成及光动力治疗研究[J]. 化学学报, 2023, 81(4): 359-370. |
[4] | 孙丽, 王亚静, 李涛, 郭英姝, 张书圣. 金纳米笼探针用于线粒体成像和光热损伤细胞★[J]. 化学学报, 2023, 81(10): 1301-1310. |
[5] | 宋思睿, 唐永和, 孙良广, 郭锐, 姜冠帆, 林伟英. 基于香豆素荧光团的新型极性检测荧光探针的开发及其成像应用[J]. 化学学报, 2022, 80(9): 1217-1222. |
[6] | 刘巴蒂, 王承俊, 钱鹰. 噻吩基氟硼二吡咯近红外光敏染料的合成、双光子荧光成像及光动力治疗研究[J]. 化学学报, 2022, 80(8): 1071-1083. |
[7] | 王其, 夏辉, 熊炎威, 张新敏, 蔡杰, 陈冲, 高逸聪, 陆峰, 范曲立. 调控供电子策略简易制备近红外二区有机小分子光学诊疗试剂[J]. 化学学报, 2022, 80(11): 1485-1493. |
[8] | 潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维. 透明质酸纳米材料在荧光/光声成像和光疗中的应用[J]. 化学学报, 2021, 79(9): 1097-1106. |
[9] | 魏廷文, 江龙, 陈亚辉, 陈小强. 光笼分子与材料研究进展[J]. 化学学报, 2021, 79(1): 58-70. |
[10] | 任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英. 一种基于萘酰亚胺的检测细胞内pH值的荧光探针及其生物成像应用[J]. 化学学报, 2021, 79(1): 87-92. |
[11] | 桑若愚, 许兴鹏, 王其, 范曲立, 黄维. 近红外二区有机小分子荧光探针[J]. 化学学报, 2020, 78(9): 901-915. |
[12] | 王培培, 梁涛, 左苗苗, 李贞, 刘志洪. 基于发光共振能量转移的比率型上转换荧光纳米探针检测次硝酸[J]. 化学学报, 2020, 78(8): 797-804. |
[13] | 关晓琳, 王林, 李志飞, 刘美娜, 王凯龙, 林斌, 杨学琴, 来守军, 雷自强. 基于AIE效应的多重刺激响应性聚合物纳米微球的制备及其细胞示踪应用[J]. 化学学报, 2019, 77(10): 1036-1044. |
[14] | 张燕燕, 武明豪, 武明杰, 国林沛, 曹琳, 吴虹仪, 张雪宁. 超小金纳米簇用于荧光及CT双模态成像的研究[J]. 化学学报, 2018, 76(9): 709-714. |
[15] | 杨立敏, 刘波, 李娜, 唐波. 纳米荧光探针用于核酸分子的检测及成像研究[J]. 化学学报, 2017, 75(11): 1047-1060. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||