Acta Chimica Sinica ›› 2014, Vol. 72 ›› Issue (11): 1125-1138.DOI: 10.6023/A14080602 Previous Articles Next Articles
Review
赵刘斌a, 黄逸凡a, 吴德印a, 任斌a,b
投稿日期:
2014-08-25
发布日期:
2014-10-17
通讯作者:
吴德印, 任斌
E-mail:bren@xmu.edu.cn;dywu@xmu.edu.cn
作者简介:
赵刘斌,男,厦门大学化学化工学院,2014年获厦门大学博士学位,现为西南大学讲师,主要研究方向为表面增强拉曼光谱理论和金属纳米结构表面光电化学反应理论.黄逸凡,男,2013年获厦门大学博士学位,现为荷兰莱顿大学博士后.主要研究方向电化学表界面光谱.吴德印,男,厦门大学化学化工学院教授,博士生导师,主要研究方向为表面增强拉曼光谱理论、电荷转移和传输理论、分子光谱理论.任斌,男,厦门大学化学化工学院教授,博士生导师,主要研究方向为光谱电化学、电催化、电分析、表面等离激元光子学、纳米电化学、纳米电分析、纳米材料合成.
Zhao Liubina, Huang Yifana, Wu Deyina, Ren Bina,b
Received:
2014-08-25
Published:
2014-10-17
Share
Zhao Liubin, Huang Yifan, Wu Deyin, Ren Bin. Surface-enhanced Raman Spectroscopy and Plasmon-Assisted Photocatalysis of p-Aminothiophenol[J]. Acta Chimica Sinica, 2014, 72(11): 1125-1138.
[1] Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824. [2] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267. [3] Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Chem. Soc. Rev. 2008, 37, 898. [4] Morton, S. M.; Silverstein, D. W.; Jensen, L. Chem. Rev. 2011, 111, 3962. [5] Wang, Z. Prog. Phys. 2009, 29, 287. [6] Li, Z.; Li, J. Chemistry Online 2011, 56, 2631. [7] Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Chem. Rev. 2011, 111, 3669. [8] Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Chem. Rev. 2011, 111, 3888. [9] Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Acc. Chem. Res. 2008, 41, 1653. [10] Fang, N.; Lee, H.; Sun, C.; Zhang, X. Science 2005, 308, 534. [11] Gramotnev, D. K.; Bozhevolnyi, S. I. Nat. Photonics 2010, 4, 83. [12] Nie, S. M.; Emory, S. R. Science 1997, 275, 1102. [13] Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667. [14] Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913. [15] Schlücker, S. Angew. Chem., Int. Ed. 2014, 53, 4756. [16] Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 392. [17] Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G. Nature 2013, 498, 82. [18] Emmanuel, F.; Samuel, G. J. Phys. D: Appl. Phys. 2008, 41, 013001. [19] Osawa, M. Bull. Chem. Soc. Jpn. 1997, 70, 2861. [20] Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. [21] Sarina, S.; Waclawik, E. R.; Zhu, H. Green Chem. 2013, 15, 1814. [22] Xiao, M.; Jiang, R.; Wang, F.; Fang, C.; Wang, J.; Yu, J. C. J. Mater. Chem. A 2013, 1, 5790. [23] Zhang, X.; Chen, Y. L.; Liu, R.-S.; Tsai, D. P. Rep. Prog. Phys. 2013, 76, 046401. [24] Kale, M. J.; Avanesian, T.; Christopher, P. ACS Catal. 2014, 4, 116. [25] Fleischman, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163. [26] Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1. [27] Albrecht, M. G.; Crieghton, J. A. J. Am. Chem. Soc. 1977, 99, 5215. [28] Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. [29] Schatz, G. C. Acc. Chem. Res. 1984, 17, 370. [30] Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Chem. Soc. Rev. 2008, 37, 1025. [31] Zhao, L. L.; Jensen, L.; Schatz, G. C. J. Am. Chem. Soc. 2006, 128, 2911. [32] Zhao, L. L.; Jensen, L.; Schatz, G. C. Nano Lett. 2006, 6, 1229. [33] Wu, D. Y.; Ren, B.; Xu, X.; Liu, G. K.; Yang, Z. L.; Tian, Z. Q. J. Chem. Phys. 2003, 119, 1701. [34] Wu, D. Y.; Duan, S.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2005, 36, 533. [35] Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195. [36] Xu, X.-Y.; Li, S.-J.; Wu, D.-Y.; Gu, R.-A. Acta Chim. Sinica 2007, 65, 1095. (许小燕, 李淑瑾, 吴德印, 顾仁敖, 化学学报, 2007, 65, 1095.) [37] Xu, M.; Zhou, W.; Yao, J.; Fan, X.; Gu, R. Acta Chim. Sinica 2009, 67, 134. (徐敏敏, 邹文君, 姚建林, 范晓敏, 顾仁敖, 化学学报, 2009, 67, 134.) [38] Wu, D. Y.; Hayashi, M.; Chang, C. H.; Liang, K. K.; Lin, S. H. J. Chem. Phys. 2003, 118, 4073. [39] Jensen, L.; Aikens, C. M.; Schatz, G. C. Chem. Soc. Rev. 2008, 37, 1061. [40] Lombardi, J. R.; Birke, R. L. J. Phys. Chem. C 2008, 112, 5605. [41] Lombardi, J. R.; Birke, R. L. Acc. Chem. Res. 2009, 42, 734. [42] Albrecht, A. C. J. Chem. Phys. 1960, 33, 156. [43] Albrecht, A. C. J. Chem. Phys. 1961, 34, 1476. [44] Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. J. Phys. Condens. Matter 1992, 4, 1143. [45] Lombardi, J. R.; Birke, R. L.; Lu, T.; Xu, J. J. Chem. Phys. 1986, 84, 4174. [46] Huang, Y.-F.; Wu, D.-Y.; Zhu, H.-P.; Zhao, L.-B.; Liu, G.-K.; Ren, B.; Tian, Z.-Q. Phys. Chem. Chem. Phys. 2012, 14, 8485. [47] Hill, W.; Wehling, B. J. Phys. Chem. 1993, 97, 9451. [48] Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem. 1994, 98, 12702. [49] Oldenburg, S. J.; Westcott, S. L.; Averitt, R. D.; Halas, N. J. J. Chem. Phys. 1999, 111, 4729. [50] Zhou, Q.; Li, X.; Fan, Q.; Zhang, X.; Zheng, J. Angew. Chem., Int. Ed. 2006, 45, 3970. [51] Jackson, J. B.; Halas, N. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 17930. [52] Fromm, D. P.; Sundaramurthy, A.; Kinkhabwala, A.; Schuck, P. J.; Kino, G. S.; Moerner, W. E. J. Chem. Phys. 2006, 124, 061101. [53] Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J. Phys. Chem. C 2009, 113, 18212. [54] Fang, Y.; Li, Y.; Xu, H.; Sun, M. Langmuir 2010, 26, 7737. [55] Huang, Y.; Fang, Y.; Yang, Z.; Sun, M. J. Phys. Chem. C 2010, 114, 18263. [56] Sun, M.; Huang, Y.; Xia, L.; Chen, X.; Xu, H. J. Phys. Chem. C 2011, 115, 9629. [57] Kim, K.; Kim, K. L.; Lee, H. B.; Shin, K. S. J. Phys. Chem. C 2010, 114, 18679. [58] Kim, N. H.; Lee, S. J.; Moskovits, M. Nano Lett. 2010, 10, 4181. [59] Park, W.-H.; Kim, Z. H. Nano Lett. 2010, 10, 4040. [60] Kim, K.; Yoon, J. K.; Lee, H. B.; Shin, D.; Shin, K. S. Langmuir 2011, 27, 4526. [61] Choi, H.-K.; Shon, H. K.; Yu, H.; Lee, T. G.; Kim, Z. H. J. Phys. Chem. Lett. 2013, 4, 1079. [62] Huang, Y. Z.; Dong, B. Sci. China Chem. 2012, 55, 2567. [63] Matsuda, N.; Yoshii, K.; Ataka, K.; Osawa, M.; Matsue, T.; Uchida, I. Chem. Lett. 1992, 21, 1385. [64] Zong, S.; Wang, Z.; Yang, J.; Cui, Y. Anal. Chem. 2011, 83, 4178. [65] Ji, W.; Spegazzini, N.; Kitahama, Y.; Chen, Y.; Zhao, B.; Ozaki, Y. J. Phys. Chem. Lett. 2012, 3, 3204. [66] Kim, K.; Kim, K. L.; Shin, D.; Choi, J.-Y.; Shin, K. S. J. Phys. Chem. C 2012, 116, 4774. [67] Gabudean, A. M.; Biro, D.; Astilean, S. J. Mol. Struct. 2011, 993, 420. [68] Sun, Z.; Wang, C.; Yang, J.; Zhao, B.; Lombardi, J. R. J. Phys. Chem. C 2008, 112, 6093. [69] Yang, L.; Ruan, W.; Jiang, X.; Zhao, B.; Xu, W.; Lombardi, J. R. J. Phys. Chem. C 2009, 113, 117. [70] Richter, A. P.; Lombardi, J. R.; Zhao, B. J. Phys. Chem. C 2010, 114, 1610. [71] Mao, Z.; Song, W.; Chen, L.; Ji, W.; Xue, X.; Ruan, W.; Li, Z.; Mao, H.; Ma, S.; Lombardi, J. R.; Zhao, B. J. Phys. Chem. C 2011, 115, 18378. [72] Qiu, C.; Zhang, L.; Wang, H.; Jiang, C. J. Phys. Chem. Lett. 2012, 3, 651. [73] Liu, G. K.; Hu, J.; Zheng, P. C.; Shen, G. L.; Jiang, J. H.; Yu, R. Q.; Cui, Y.; Ren, B. J. Phys. Chem. C 2008, 112, 6499. [74] Sun, M.; Xu, H. ChemPhysChem 2009, 10, 392. [75] Gibson, J. W.; Johnson, B. R. J. Chem. Phys. 2006, 124, 064701. [76] Wang, A.; Huang, Y. F.; Sur, U. K.; Wu, D. Y.; Ren, B.; Rondinini, S.; Amatore, C.; Tian, Z. Q. J. Am. Chem. Soc. 2010, 132, 9534. [77] Zhao, L.-B.; Huang, R.; Bai, M.-X.; Wu, D.-Y.; Tian, Z.-Q. J. Phys. Chem. C 2011, 115, 4174. [78] Tao, S.; Yu, L.-J.; Pang, R.; Huang, Y.-F.; Wu, D.-Y.; Tian, Z.-Q. J. Phys. Chem. C 2013, 117, 18891. [79] Zhao, L.-B.; Huang, R.; Huang, Y.-F.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. J. Chem. Phys. 2011, 135, 134707. [80] Konaka, R.; Kuruma, K.; Terabe, S. J. Am. Chem. Soc. 1968, 90, 1801. [81] Sharma, L. R.; Manchanda, A. K.; Singh, G.; Verma, R. S. Electrochim. Acta 1982, 27, 223. [82] Venkatachalam, R. S.; Boerio, F. J.; Roth, P. G. J. Raman Spectrosc. 1988, 19, 281. [83] Gao, P.; Gosztola, D.; Weaver, M. J. J. Phys. Chem. 1989, 93, 3753. [84] Hand, R. L.; Nelson, R. F. J. Am. Chem. Soc. 1974, 96, 850. [85] Lu, Y.; Xue, G. Appl. Surf. Sci. 1998, 125, 157. [86] Lu, Y.; Chen, J.; Li, F. T.; Xue, G. J. Raman Spectrosc. 2001, 32, 881. [87] Hayes, W. A.; Shannon, C. Langmuir 1996, 12, 3688. [88] Lukkari, J.; Kleemola, K.; Meretoja, M.; Ollonqvist, T.; Kankare, J. Langmuir 1998, 14, 1705. [89] Raj, C. R.; Kitamura, F.; Ohsaka, T. Langmuir 2001, 17, 7378. [90] Bahshi, L.; Frasconi, M.; Tel-Vered, R.; Yehezkeli, O.; Willner, I. Anal. Chem. 2008, 80, 8253. [91] Riskin, M.; Tel-Vered, R.; Lioubashevski, O.; Willner, I. J. Am. Chem. Soc. 2009, 131, 7368. [92] Yehezkeli, O.; Yan, Y.-M.; Baravik, I.; Tel-Vered, R.; Willner, I. Chem. Eur. J. 2009, 15, 2674. [93] Frasconi, M.; Tel-Vered, R.; Elbaz, J.; Willner, I. J. Am. Chem. Soc. 2010, 132, 2029. [94] Frasconi, M.; Tel-Vered, R.; Riskin, M.; Willner, I. J. Am. Chem. Soc. 2010, 132, 9373. [95] Park, H.; Lee, S. B.; Kim, K.; Kim, M. S. J. Phys. Chem. 1990, 94, 7576. [96] Yang, X. M.; Tryk, D. A.; Hashimoto, K.; Fujishima, A. J. Raman Spectrosc. 1998, 29, 725. [97] Wu, D.-Y.; Zhao, L.-B.; Liu, X.-M.; Huang, R.; Huang, Y.-F.; Ren, B.; Tian, Z.-Q. Chem. Commun. 2011, 47, 2520. [98] Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J. Am. Chem. Soc. 2010, 132, 9244. [99] Lee, A. S. L.; Li, Y.-S. J. Raman Spectrosc. 1994, 25, 209. [100] Kim, K.; Lee, I. Langmuir 2004, 20, 7351. [101] Kim, K.; Lee, S. J.; Kim, K. L. J. Phys. Chem. B 2004, 108, 16208. [102] Shin, K. S.; Lee, H. S.; Joo, S. W.; Kim, K. J. Phys. Chem. C 2007, 111, 15223. [103] Kim, K.; Lee, Y. M.; Lee, H. B.; Park, Y.; Bae, T. Y.; Jung, Y. M.; Choi, C. H.; Shin, K. S. J. Raman Spectrosc. 2010, 41, 187. [104] Dong, B.; Fang, Y.; Chen, X.; Xu, H.; Sun, M. Langmuir 2011, 27, 10677. [105] Dong, B.; Fang, Y.; Xia, L.; Xu, H.; Sun, M. J. Raman Spectrosc. 2011, 42, 1205. [106] Sun, M.; Xu, H. Small 2012, 8, 2776. [107] Sun, M.; Zhang, Z.; Zheng, H.; Xu, H. Sci. Rep. 2012, 2, 647. [108] Zhang, Z.; Chen, L.; Sun, M.; Ruan, P.; Zheng, H.; Xu, H. Nanoscale 2013, 5, 3249. [109] van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Nat. Nanotechnol. 2012, 7, 583. [110] Roth, P. G.; Venkatachalam, R. S.; Boerio, F. J. J. Chem. Phys. 1986, 85, 1150. [111] Sun, S.; Birke, R. L.; Lombardi, J. R.; Leung, K. P.; Genack, A. Z. J. Phys. Chem. 1988, 92, 5965. [112] Bercegol, H.; Boerio, F. J. Langmuir 1994, 10, 3684. [113] Bercegol, H.; Boerio, F. J. J. Phys. Chem. 1995, 99, 8763. [114] Yang, X. M.; Tryk, D. A.; Ajito, K.; Hashimoto, K.; Fujishima, A. Langmuir 1996, 12, 5525. [115] Yang, X. M.; Tryk, D. A.; Hashimoto, K.; Fujishima, A. J. Phys. Chem. B 1998, 102, 4933. [116] Han, H. S.; Han, S. W.; Kim, C. H.; Kim, K. Langmuir 2000, 16, 1149. [117] Han, S. W.; Lee, I.; Kim, K. Langmuir 2002, 18, 182. [118] Kim, K.; Kim, H. S.; Lee, S. J. Langmuir 2003, 19, 10985. [119] Holze, R. Electrochim. Acta 1990, 35, 1037. [120] Posey, K. L.; Viegas, M. G.; Boucher, A. J.; Wang, C.; Stambaugh, K. R.; Smith, M. M.; Carpenter, B. G.; Bridges, B. L.; Baker, S. E.; Perry, D. A. J. Phys. Chem. C 2007, 111, 12352. [121] Xu, M.; Lu, N.; Xu, H.; Qi, D.; Wang, Y.; Chi, L. Langmuir 2009, 25, 11216. [122] Szabo, N. J.; Winefordner, J. D. Anal. Chem. 1997, 69, 2418. [123] Tsai, W. H.; Boerio, F. J.; Clarson, S. J.; Montaudo, G. J. Raman Spectrosc. 1990, 21, 311. [124] Schmickler, W.; Mohr, J. J. Chem. Phys. 2002, 117, 2867. [125] Donald, W. A.; Leib, R. D.; Demireva, M.; O’Brien, J. T.; Prell, J. S.; Williams, E. R. J. Am. Chem. Soc. 2009, 131, 13328. [126] Philip, D.; Aruldhas, G. J. Solid State Chem. 1995, 116, 427. [127] Jackowska, K.; Bukowska, J.; Kudelski, A. J. Electroanal. Chem. 1993, 350, 177. [128] Muniz-Miranda, M.; Pergolese, B.; Bigotto, A. J. Phys. Chem. C 2008, 112, 6988. [129] Pergolese, B.; Muniz-Miranda, M.; Bigotto, A. Chem. Phys. Lett. 2007, 438, 290. [130] Pergolese, B.; Muniz-Miranda, M.; Sbrana, G.; Bigotto, A. Faraday Discuss. 2006, 132, 111. [131] Luo, W.-L.; Su, Y.-Q.; Tian, X.-D.; Zhao, L.-B.; Wu, D.-Y.; Tian, Z.-Q. Acta Phys.-Chim. Sin. 2012, 28, 2767. (罗文丽, 苏亚琼, 田向东, 赵刘斌, 吴德印, 田中群, 物理化学学报, 2012, 28, 2767.) [132] Wang, Y.; Zou, X.; Ren, W.; Wang, W.; Wang, E. J. Phys. Chem. C 2007, 111, 3259. [133] Kang, L.; Xu, P.; Zhang, B.; Tsai, H.; Han, X.; Wang, H.-L. Chem. Commun. 2013, 49, 3389. [134] Huang, Y.-F.; Zhang, M.; Zhao, L.-B.; Feng, J.-M.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. Angew. Chem., Int. Ed. 2014, 53, 2353. [135] Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L. Sci. Rep. 2013, 3, 2997. [136] Zhao, L.-B.; Huang, Y.-F.; Liu, X.-M.; Anema, J. R.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. Phys. Chem. Chem. Phys. 2012, 14, 12919. [137] Zhao, L.-B.; Zhang, M.; Huang, Y.-F.; Williams, C. T.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. J. Phys. Chem. Lett. 2014, 5, 1259. [138] Christopher, P.; Xin, H.; Linic, S. Nat. Chem. 2011, 3, 467. [139] Gomes Silva, C.; Juárez, R.; Marino, T.; Molinari, R.; García, H. J. Am. Chem. Soc. 2011, 133, 595. [140] Ingram, D. B.; Linic, S. J. Am. Chem. Soc. 2011, 133, 5202. [141] Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G. D.; Moskovits, M. Nat. Nanotechnol. 2013, 8, 247. [142] Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Nano Lett. 2011, 11, 1111. [143] Lee, J.; Mubeen, S.; Ji, X.; Stucky, G. D.; Moskovits, M. Nano Lett. 2012, 12, 5014. [144] Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H.-J. Chem. Rev. 2006, 106, 4301. [145] Brus, L. Acc. Chem. Res. 2008, 41, 1742. [146] Lindstrom, C. D.; Zhu, X. Y. Chem. Rev. 2006, 106, 4281. [147] Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096. [148] Grirrane, A.; Corma, A.; Garcia, H. Science 2008, 322, 1661. [149] Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlögl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S. Science 2010, 328, 224. [150] Linic, S.; Christopher, P.; Xin, H.; Marimuthu, A. Acc. Chem. Res. 2013, 46, 1890. [151] Liu, X.; He, L.; Liu, Y.-M.; Cao, Y. Acc. Chem. Res. 2013. [152] Govorov, A. O.; Richardson, H. H. Nano Today 2007, 2, 30. [153] Zhu, H.; Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Zhao, J.; Guo, C.; Xie, T.; Wang, D. Chem. Commun. 2009, 7524. [154] Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. Nano Lett. 2009, 9, 731. [155] Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. ACS Nano 2010, 4, 1259. [156] Christopher, P.; Xin, H.; Marimuthu, A.; Linic, S. Nat. Mater. 2012, 11, 1044. [157] Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Nano Lett. 2013, 13, 240. [158] Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M.-H. Angew. Chem., Int. Ed. 2008, 47, 7931. [159] Hu, C.; Peng, T.; Hu, X.; Nie, Y.; Zhou, X.; Qu, J.; He, H. J. Am. Chem. Soc. 2009, 132, 857. [160] Chen, X.; Zhu, H.-Y.; Zhao, J.-C.; Zheng, Z.-F.; Gao, X.-P. Angew. Chem. 2008, 120, 5433. [161] Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem., Int. Ed. 2010, 49, 9657. [162] Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590. [163] Guo, X.; Hao, C.; Jin, G.; Zhu, H.-Y.; Guo, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 1973. [164] Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901. [165] Jin, R. C.; Cao, Y. C.; Hao, E. C.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.Maillard, M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611. |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[3] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[4] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[5] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[6] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[7] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[8] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[9] | Lei Yang, Jiaoyang Ge, Fangli Wang, Wangyang Wu, Zongxiang Zheng, Hongtao Cao, Zhou Wang, Xueqin Ran, Linhai Xie. A Theoretical Study on the Effective Reduction of Internal Reorganization Energy Based on the Macrocyclic Structure of Fluorene [J]. Acta Chimica Sinica, 2023, 81(6): 613-619. |
[10] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[11] | Jie Yang, Lin Ling, Yuxue Li, Long Lu. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate [J]. Acta Chimica Sinica, 2023, 81(4): 328-337. |
[12] | Shaoqin Zhang, Meiqing Li, Zhongjun Zhou, Zexing Qu. Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process [J]. Acta Chimica Sinica, 2023, 81(2): 124-130. |
[13] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[14] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[15] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||