Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (4): 388-405.DOI: 10.6023/A20100492 Previous Articles Next Articles
Review
投稿日期:
2020-10-26
发布日期:
2021-02-22
通讯作者:
薛面起
作者简介:
马慧, 中国科学院理化技术研究所博士研究生. 2019在山东大学获得硕士学位, 2019年至今于中国科学院理化技术研究所攻读高分子化学与物理博士学位, 主要研究方向为水系二次离子电池. |
张桓荣, 中国科学院理化技术研究所硕士研究生. 2019年在河北大学获得学士学位, 2019年至今于中国科学院理化技术研究所攻读高分子化学与物理硕士学位, 主要研究方向为水系二次电池电解液. |
薛面起, 中国科学院理化技术研究所研究员. 2012年于中国人民大学获得博士学位. 2012~2014年就职于北京大学新材料学院, 任特聘研究员. 2014~2018年在中国科学院物理研究所工作. 现任中国科学院理化技术研究所研究员, 博士生导师, 主要研究领域为共轭高分子结晶和储能材料与器件. |
基金资助:
Hui Ma1, Huanrong Zhang1, Mianqi Xue1,*()
Received:
2020-10-26
Published:
2021-02-22
Contact:
Mianqi Xue
About author:
Supported by:
Share
Hui Ma, Huanrong Zhang, Mianqi Xue. Research Progress and Practical Challenges of Aqueous Sodium-Ion Batteries[J]. Acta Chimica Sinica, 2021, 79(4): 388-405.
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn-based oxides | γ-MnO2 | Zn | — | 7 M NaOH+ 1 M ZnSO4 | 1.3 | 225 (250 A•cm-2) | 76 (25) | [ | |||||||||
λ-MnO2 | AC | graphite sheet and stainless steel foil | 1 M Na2SO4 | 1.2 | —(3C) | 100 (5000) | [ | ||||||||||
Na0.44MnO2 | NVP/C | — | 1 M Na2SO4 | 0.7 | 117 (1C) | 94.8 (200) | [ | ||||||||||
Na0.44MnO2 | NTP@C | stainless steel mesh | 1 M Na2SO4 | 1.0 | 42 (0.1 A•g-1) | 62 (1000) | [ | ||||||||||
Na0.44MnO2 | NTP | — | 1 M Na2SO4 | 1.0 | 50 (7C) | 50 (1600) | [ | ||||||||||
Na0.44MnO2 | Na2V6O16•nH2O | nickel foam | 1 M Na2SO4 | 0.9 | 62 (0.04 A•g-1) | 40 (30) | [ | ||||||||||
Na0.44MnO2 | NTP/C | nickel foam | 1 M Na2SO4 | 0.8 | 50 (50C) | 100 (75) | [ | ||||||||||
Na0.44MnO2 | PNP@CNT | titanium mesh | 1 M Na2SO4 | 0.8 | 92 (5C) | 89 (200) | [ | ||||||||||
Na0.44MnO2/CNT | Zn | carbon foil | 1 M Na2SO4+0.5 M ZnSO4 | — | — | — | [ | ||||||||||
Na0.44MnO2 | PPy-CNT | titanium mesh | 1 M Na2SO4 | 0.7 | 99.2 (0.1 A•g-1) | 94 (100) | [ | ||||||||||
Na0.44MnO2 | TiP2O7 | — | 1 M Na2SO4 | ~0.8 | 40 (2.5 mA•g-1) | — | [ | ||||||||||
Na0.44MnO2 | FePO4 | titanium mesh | 1 M Na2SO4 | 0.7 | 70 (3C) | 87 (300) | [ | ||||||||||
Na0.44MnO2 | AC | — | 1 M Na2SO4 | 0.8 | 45 (4C) | ~100 (1000) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | titanium mesh | 1 M Na2SO4 | 1.2 | 76 (2C) | 88 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP/C | titanium mesh | 5 M NaClO4 | 1.0 | 100 (2C) | 33 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | Na1.5Ti1.5Fe0.5(PO4)3/C | titanium mesh | 5 M NaClO4 | 1.0 | 109.5 (2C) | 97.4 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | stainless steel grid | 9.26 m NaCF3SO3 | 1.0 | 31 (0.2C) | 70 (350) | [ | ||||||||||
Na0.27MnO2 | Na0.27MnO2 | carbon paper | 1 M Na2SO4 | 1.1 | 88 (1 A•g-1) | 100 (5000) | [ | ||||||||||
Na0.35MnO2 | PPy@MoO3 | nickel mesh | 0.5 M Na2SO4 | 0.8 | 25 (0.55 A•g-1) | 79 (1000) | [ | ||||||||||
K0.34MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 64 (0.2 A•g-1) | 84.1 (200) | [ | ||||||||||
K0.15Na0.26MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 1.0 | 65 (0.2 A•g-1) | 92 (200) | [ | ||||||||||
Na0.58MnO2·0.48H2O | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 39 (10C) | 94 (1000) | [ | ||||||||||
NaMnO2 | NTP | titanium mesh | 2 M NaAc | 1.15 | 37 (5C) | 75 (500) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.7 | 80 (0.2 A•g-1) | 83 (100) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 80 (0.2 A•g-1) | 86 (100) | [ | ||||||||||
K0.27MnO2 | AC | — | 1 M Na2SO4 | 0.9 | 60 (0.2 A•g-1) | 75 (200) | [ | ||||||||||
Prussian blue analogues | Na2CuFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 86 (10C) | 88 (1000) | [ | |||||||||
Na2CoFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 0.8 | 100 (5C) | 100 (100) | [ | ||||||||||
Na2Zn3[Fe(CN)6]2 | NTP | titanium mesh | 17 m NaClO4 | 1.6 | 47 (10C) | 100 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | TiS2 | titanium sheet (cathode) and aluminum foil (anode) | 15 M NaClO4 | 1.75 | 38 (5C) | 92 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | KMn[Cr(CN)6] | titanium mesh | 17 m NaClO4 | >2 | 27 (30C) | 78 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | NTP/C | aluminum foil | 32 M Kac+ 8 M NaAc | 0.82 | 50 (0.1 A•g-1) | 36 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | Zn | titanium mesh | 1 M Na2SO4+1 M ZnSO4+SDS | 1.0 | ≈130 (5C) | 75 (2000) | [ | ||||||||||
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
Na2Mn[Fe(CN)6] | Na3Fe2(PO4)3 | — | 17 m NaClO4 | 0.9 | 59 (5C) | 75 (700) | [ | ||||||||||
Na1.88Mn[Fe(CN)6]0.971.35 H2O | NaTiOPO4 | — | 9 m NaOTF+ 22 m TEAOTF | 1.74 | 40 (0.25C) | 90 (200) | [ | ||||||||||
NaFeHCN | AC | carbon paper | 2 M NaNO3+ 60 wt% maltose | 0.8 | 74.4 (2 A•g-1) | 87 (2000) | [ | ||||||||||
Na2NiFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.27 | 79 (5C) | 88 (250) | [ | ||||||||||
Na1.45Ni[Fe(CN)6]0.87· 3.02 H2O | NTP@C | stainless steel mesh | 5 M NaClO4 | 1.4 | 61.4 (0.1 A•g-1) | 83 (600) | [ | ||||||||||
Na1.90Cu0.95[Fe(CN)6] 1.9 H2O | Na1.32Fe- [Fe(CN)6]0.87 2.0 H2O | graphite sheet | saturated NaNO3 solution | 0.7 | 50 (5C) | 86 (250) | [ | ||||||||||
K2Zn3(Fe(CN)6)2 9 H2O | NTP | carbon cloth | NaClO4-PVA gel | 1.6 | 0.56 mAh• cm-2 (10 A•cm-2) | 90.2 (300) | [ | ||||||||||
Zn3[Fe(CN)6]2 | NTP/C | titanium mesh | NaClO4-H2O-PEG | 1.6 | 69 (2C) | >91 (100) | [ | ||||||||||
CuHCFe | MnHCMn | carbon cloth | 10 M NaClO4+Mn(ClO4)2 solution | 0.95 | 23 (10C) | 100 (1000) | [ | ||||||||||
K0.8V1.8OxFe(CN)6 | WO3 | titanium mesh | NaClO4-H2O-PEG | — | 67 (1 A•g-1) | 90.3 (2000) | [ | ||||||||||
InFe(CN)6 | NTP-CNT | — | Na2SO4-CMC gel | 1.55 | 38 mAh•cm-2 (0.3 A•cm-2) | 91 (300) | [ | ||||||||||
Polyanionic compounds | NVP | NTP | nickel foam | 1 M Na2SO4 | 1.2 | 58 (10 A•g-1) | 50 (50) | [ | |||||||||
NaFePO4/AlF3 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 95.6 (1 C) | 58.4 (50) | [ | ||||||||||
NaFePO4 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 101.7 (1 C) | 39.6 (50) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 2 M Na2SO4 | — | 45 (2 mA•cm-2) | 82 (30) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 4 M NaClO4 | — | 45 (2 mA•cm-2) | 93 (30) | [ | ||||||||||
Na4Fe3(PO4)2(P2O7) | NTP | stainless steel mesh | 17 m NaClO4 | 2 | 44 (1C) | 75 (200) | [ | ||||||||||
Na3V2(PO4)2F3-CNT | NTP-CNT | carbon paper (cathode) and titanium foil (anode) | 17 m NaClO4 | 1.7 | 75 (0.5C) | 74 (20) | [ | ||||||||||
Na3(VOPO4)2F | NTP | titanium mesh (cathode) and stainless steel mesh (anode) | 35 m NaFSI | 1.4 | 72 (1C) | 83 (500) | [ | ||||||||||
Na3V2O2x(PO4)2F3-2x- CNT | NTP/C | carbon paper | 10 M NaClO4+ 2 vol% VC | 1.45 | 39 (10C) | 85 (200) | [ | ||||||||||
Na2FePO4F | NTP | titanium mesh | 17 m NaClO4 | 0.7 | 85 (1 mA•cm-2) | 64 (100) | [ | ||||||||||
Na3MnPO4CO3 | NTP | titanium mesh | 5 M NaNO3 | 0.8 | 68 (0.2 C) | 96 (50) | [ | ||||||||||
NaVPO4F | polyimide | stainless steel mesh | 5 M NaNO3 | 0.9 | 40 (0.05 A•g-1) | 75 (20) | [ | ||||||||||
NVP | PPTO | Pb (cathode) titanium mesh (anode) | 5 M NaNO3 | 1.0 | 201 (1C) | 79 (80) | [ | ||||||||||
NVP/C | alloxazine/CMK-3 | stainless steel mesh | NaCF3SO3-PAM gel | 1.03 | 160 (2C) | 90 (100) | [ | ||||||||||
Other | NaNi0.4Co0.6O2 | AC | stainless steel mesh | 0.5 M Na2SO4 | 0.7 | 105 (0.8 A•g-1) | 95 (500) | [ | |||||||||
PPy | alizarin | carbon cloth | NaClO4-PVA gel | 1.0 | 152 (1.0 A•g-1) | — | [ |
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn-based oxides | γ-MnO2 | Zn | — | 7 M NaOH+ 1 M ZnSO4 | 1.3 | 225 (250 A•cm-2) | 76 (25) | [ | |||||||||
λ-MnO2 | AC | graphite sheet and stainless steel foil | 1 M Na2SO4 | 1.2 | —(3C) | 100 (5000) | [ | ||||||||||
Na0.44MnO2 | NVP/C | — | 1 M Na2SO4 | 0.7 | 117 (1C) | 94.8 (200) | [ | ||||||||||
Na0.44MnO2 | NTP@C | stainless steel mesh | 1 M Na2SO4 | 1.0 | 42 (0.1 A•g-1) | 62 (1000) | [ | ||||||||||
Na0.44MnO2 | NTP | — | 1 M Na2SO4 | 1.0 | 50 (7C) | 50 (1600) | [ | ||||||||||
Na0.44MnO2 | Na2V6O16•nH2O | nickel foam | 1 M Na2SO4 | 0.9 | 62 (0.04 A•g-1) | 40 (30) | [ | ||||||||||
Na0.44MnO2 | NTP/C | nickel foam | 1 M Na2SO4 | 0.8 | 50 (50C) | 100 (75) | [ | ||||||||||
Na0.44MnO2 | PNP@CNT | titanium mesh | 1 M Na2SO4 | 0.8 | 92 (5C) | 89 (200) | [ | ||||||||||
Na0.44MnO2/CNT | Zn | carbon foil | 1 M Na2SO4+0.5 M ZnSO4 | — | — | — | [ | ||||||||||
Na0.44MnO2 | PPy-CNT | titanium mesh | 1 M Na2SO4 | 0.7 | 99.2 (0.1 A•g-1) | 94 (100) | [ | ||||||||||
Na0.44MnO2 | TiP2O7 | — | 1 M Na2SO4 | ~0.8 | 40 (2.5 mA•g-1) | — | [ | ||||||||||
Na0.44MnO2 | FePO4 | titanium mesh | 1 M Na2SO4 | 0.7 | 70 (3C) | 87 (300) | [ | ||||||||||
Na0.44MnO2 | AC | — | 1 M Na2SO4 | 0.8 | 45 (4C) | ~100 (1000) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | titanium mesh | 1 M Na2SO4 | 1.2 | 76 (2C) | 88 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP/C | titanium mesh | 5 M NaClO4 | 1.0 | 100 (2C) | 33 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | Na1.5Ti1.5Fe0.5(PO4)3/C | titanium mesh | 5 M NaClO4 | 1.0 | 109.5 (2C) | 97.4 (300) | [ | ||||||||||
Na0.66[Mn0.66Ti0.34]O2 | NTP | stainless steel grid | 9.26 m NaCF3SO3 | 1.0 | 31 (0.2C) | 70 (350) | [ | ||||||||||
Na0.27MnO2 | Na0.27MnO2 | carbon paper | 1 M Na2SO4 | 1.1 | 88 (1 A•g-1) | 100 (5000) | [ | ||||||||||
Na0.35MnO2 | PPy@MoO3 | nickel mesh | 0.5 M Na2SO4 | 0.8 | 25 (0.55 A•g-1) | 79 (1000) | [ | ||||||||||
K0.34MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 64 (0.2 A•g-1) | 84.1 (200) | [ | ||||||||||
K0.15Na0.26MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 1.0 | 65 (0.2 A•g-1) | 92 (200) | [ | ||||||||||
Na0.58MnO2·0.48H2O | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 39 (10C) | 94 (1000) | [ | ||||||||||
NaMnO2 | NTP | titanium mesh | 2 M NaAc | 1.15 | 37 (5C) | 75 (500) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.7 | 80 (0.2 A•g-1) | 83 (100) | [ | ||||||||||
K0.27MnO2 | NTP | stainless steel mesh | 1 M Na2SO4 | 0.8 | 80 (0.2 A•g-1) | 86 (100) | [ | ||||||||||
K0.27MnO2 | AC | — | 1 M Na2SO4 | 0.9 | 60 (0.2 A•g-1) | 75 (200) | [ | ||||||||||
Prussian blue analogues | Na2CuFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.4 | 86 (10C) | 88 (1000) | [ | |||||||||
Na2CoFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 0.8 | 100 (5C) | 100 (100) | [ | ||||||||||
Na2Zn3[Fe(CN)6]2 | NTP | titanium mesh | 17 m NaClO4 | 1.6 | 47 (10C) | 100 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | TiS2 | titanium sheet (cathode) and aluminum foil (anode) | 15 M NaClO4 | 1.75 | 38 (5C) | 92 (1000) | [ | ||||||||||
Na2Mn[Fe(CN)6] | KMn[Cr(CN)6] | titanium mesh | 17 m NaClO4 | >2 | 27 (30C) | 78 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | NTP/C | aluminum foil | 32 M Kac+ 8 M NaAc | 0.82 | 50 (0.1 A•g-1) | 36 (100) | [ | ||||||||||
Na2Mn[Fe(CN)6] | Zn | titanium mesh | 1 M Na2SO4+1 M ZnSO4+SDS | 1.0 | ≈130 (5C) | 75 (2000) | [ | ||||||||||
Type (Based cathode) | Cathode | Anode | Current collector | Electrolyte | AV. Voltage/V | Capacity/ (mAh•g-1) | Retention/% (No. of cycles) | Ref. | |||||||||
Na2Mn[Fe(CN)6] | Na3Fe2(PO4)3 | — | 17 m NaClO4 | 0.9 | 59 (5C) | 75 (700) | [ | ||||||||||
Na1.88Mn[Fe(CN)6]0.971.35 H2O | NaTiOPO4 | — | 9 m NaOTF+ 22 m TEAOTF | 1.74 | 40 (0.25C) | 90 (200) | [ | ||||||||||
NaFeHCN | AC | carbon paper | 2 M NaNO3+ 60 wt% maltose | 0.8 | 74.4 (2 A•g-1) | 87 (2000) | [ | ||||||||||
Na2NiFe(CN)6 | NTP | titanium mesh | 1 M Na2SO4 | 1.27 | 79 (5C) | 88 (250) | [ | ||||||||||
Na1.45Ni[Fe(CN)6]0.87· 3.02 H2O | NTP@C | stainless steel mesh | 5 M NaClO4 | 1.4 | 61.4 (0.1 A•g-1) | 83 (600) | [ | ||||||||||
Na1.90Cu0.95[Fe(CN)6] 1.9 H2O | Na1.32Fe- [Fe(CN)6]0.87 2.0 H2O | graphite sheet | saturated NaNO3 solution | 0.7 | 50 (5C) | 86 (250) | [ | ||||||||||
K2Zn3(Fe(CN)6)2 9 H2O | NTP | carbon cloth | NaClO4-PVA gel | 1.6 | 0.56 mAh• cm-2 (10 A•cm-2) | 90.2 (300) | [ | ||||||||||
Zn3[Fe(CN)6]2 | NTP/C | titanium mesh | NaClO4-H2O-PEG | 1.6 | 69 (2C) | >91 (100) | [ | ||||||||||
CuHCFe | MnHCMn | carbon cloth | 10 M NaClO4+Mn(ClO4)2 solution | 0.95 | 23 (10C) | 100 (1000) | [ | ||||||||||
K0.8V1.8OxFe(CN)6 | WO3 | titanium mesh | NaClO4-H2O-PEG | — | 67 (1 A•g-1) | 90.3 (2000) | [ | ||||||||||
InFe(CN)6 | NTP-CNT | — | Na2SO4-CMC gel | 1.55 | 38 mAh•cm-2 (0.3 A•cm-2) | 91 (300) | [ | ||||||||||
Polyanionic compounds | NVP | NTP | nickel foam | 1 M Na2SO4 | 1.2 | 58 (10 A•g-1) | 50 (50) | [ | |||||||||
NaFePO4/AlF3 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 95.6 (1 C) | 58.4 (50) | [ | ||||||||||
NaFePO4 | AC | stainless-steel mesh | 1 M Na2SO4 | — | 101.7 (1 C) | 39.6 (50) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 2 M Na2SO4 | — | 45 (2 mA•cm-2) | 82 (30) | [ | ||||||||||
Na2FeP2O7 | NTP | nickel mesh | 4 M NaClO4 | — | 45 (2 mA•cm-2) | 93 (30) | [ | ||||||||||
Na4Fe3(PO4)2(P2O7) | NTP | stainless steel mesh | 17 m NaClO4 | 2 | 44 (1C) | 75 (200) | [ | ||||||||||
Na3V2(PO4)2F3-CNT | NTP-CNT | carbon paper (cathode) and titanium foil (anode) | 17 m NaClO4 | 1.7 | 75 (0.5C) | 74 (20) | [ | ||||||||||
Na3(VOPO4)2F | NTP | titanium mesh (cathode) and stainless steel mesh (anode) | 35 m NaFSI | 1.4 | 72 (1C) | 83 (500) | [ | ||||||||||
Na3V2O2x(PO4)2F3-2x- CNT | NTP/C | carbon paper | 10 M NaClO4+ 2 vol% VC | 1.45 | 39 (10C) | 85 (200) | [ | ||||||||||
Na2FePO4F | NTP | titanium mesh | 17 m NaClO4 | 0.7 | 85 (1 mA•cm-2) | 64 (100) | [ | ||||||||||
Na3MnPO4CO3 | NTP | titanium mesh | 5 M NaNO3 | 0.8 | 68 (0.2 C) | 96 (50) | [ | ||||||||||
NaVPO4F | polyimide | stainless steel mesh | 5 M NaNO3 | 0.9 | 40 (0.05 A•g-1) | 75 (20) | [ | ||||||||||
NVP | PPTO | Pb (cathode) titanium mesh (anode) | 5 M NaNO3 | 1.0 | 201 (1C) | 79 (80) | [ | ||||||||||
NVP/C | alloxazine/CMK-3 | stainless steel mesh | NaCF3SO3-PAM gel | 1.03 | 160 (2C) | 90 (100) | [ | ||||||||||
Other | NaNi0.4Co0.6O2 | AC | stainless steel mesh | 0.5 M Na2SO4 | 0.7 | 105 (0.8 A•g-1) | 95 (500) | [ | |||||||||
PPy | alizarin | carbon cloth | NaClO4-PVA gel | 1.0 | 152 (1.0 A•g-1) | — | [ |
[1] |
Larcher, D.; Tarascon, J.M. Nature Chem. 2014, 7,19.
|
[2] |
Song, X.; Li, J.; Li, Z.; Li, X.; Ding, Y.; Xiao, Q.; Lei, G. Acta Chim. Sinica 2019, 77,625. (in Chinese)
|
( 宋学霞, 李继成, 李朝晖, 李喜飞, 丁燕怀, 肖启振, 雷钢铁, 化学学报, 2019, 77,625.)
|
|
[3] |
Wang, X.; Zhang, Y.; Ma, L.; Wei, L. Acta Chim. Sinica 2019, 77,24. (in Chinese)
|
( 王晓钰, 张渝, 马磊, 魏良明, 化学学报, 2019, 77,24.)
|
|
[4] |
Kang, S.; Fan, S.; Liu, Y.; Wei, Y.; Li, Y.; Fang, J.; Meng, C. Acta Chim. Sinica 2019, 77,647. (in Chinese)
|
( 康树森, 范少聪, 刘岩, 魏彦存, 李营, 房金刚, 孟垂舟, 化学学报, 2019, 77,647.)
|
|
[5] |
Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2,830.
|
[6] |
Bin, D.; Wang, F.; Tamirat, A.G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8,1703008.
|
[7] |
Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Mater. Today Energy 2020, 17,100432.
|
[8] |
Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77,681. (in Chinese)
|
( 彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77,681.)
|
|
[9] |
Wang, X.; Chen, D.; Yang, Z.; Zhang, X.; Wang, C.; Chen, J.; Zhang, X.; Xue, M. Adv. Mater. 2016, 28,8645.
|
[10] |
Kim, H.; Hong, J.; Park, K.Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114,11788.
|
[11] |
Deng, W.; Wang, X.; Liu, C.; Li, C.; Chen, J.; Zhu, N.; Li, R.; Xue, M. Energy Storage Mater. 2019, 20,373.
|
[12] |
Li, W.; Dahn, J.R.; Wainwright, D.S. Science 1994, 264,1115.
|
[13] |
Liu, C.; Wang, X.; Deng, W.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Angew. Chem. Int. Ed. 2018, 57,7046.
|
[14] |
Zhang, L.; Wang, W.; Zhang, H.; Han, S.; Wang, L. Acta Chim. Sinica 2021, 79,158. (in Chinese)
|
( 张璐, 王文凤, 张洪明, 韩树民, 王利民, 化学学报, 2021, 79,158.)
|
|
[15] |
Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76,286. (in Chinese)
|
( 李攀, 刘建, 孙惟袆, 陶占良, 陈军, 化学学报, 2018, 76,286.)
|
|
[16] |
Yang, H.; Qian, J. J. Inorg. Mater. 2013, 28,1165. (in Chinese)
|
( 杨汉西, 钱江锋, 无机材料学报, 2013, 28,1165.)
|
|
[17] |
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114,11636.
|
[18] |
Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49,180.
|
[19] |
Liu, C.; Wang, X.; Deng, W.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Angew. Chem. Int. Ed. 2018, 57,7046.
|
[20] |
Wu, X.Y.; Sun, M.Y.; Shen, Y.F.; Qian, J.F.; Cao, Y.L.; Ai, X.P.; Yang, H.X. ChemSusChem 2014, 7,407.
|
[21] |
Zang, X.; Wang, X.; Liu, H.; Ma, X.; Wang, W.; Ji, J.; Chen, J.; Li, R.; Xue, M. ACS Appl. Mater. Interfaces 2020, 12,9347.
|
[22] |
Minakshi, M.; Ralph, D. ECS Trans. 2013, 45,95.
|
[23] |
Wang, L.; Ebina, Y.; Takada, K.; Sasaki, T. Chem. Commun. 2004,1074.
|
[24] |
Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112,4406.
|
[25] |
Ragupathy P.; Vasan H. N.; Munichandraiah N. J. Electrochem. Soc. 2008, 155,A34.
|
[26] |
Tarascon, J.; Guyomard, D.; Wilkens, B.; McKinnon, W.R.; Barboux, P. Solid State Ionics 1992, 57,113.
|
[27] |
Minakshi, M. Mater. Sci. Eng., B 2012, 177,1788.
|
[28] |
Whitacre, J.F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S.E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D. J. Power Sources 2012, 213,255.
|
[29] |
Ju, X.; Huang, H.; Zheng, H.; Deng, P.; Li, S.; Qu, B.; Wang, T. J. Power Sources 2018, 395,395.
|
[30] |
Ke, L.; Dong, J.; Lin, B.; Yu, T.; Wang, H.; Zhang, S.; Deng, C. Nanoscale 2017, 9,4183.
|
[31] |
Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Chem 2017, 3,348.
|
[32] |
Li, Z.; Young, D.; Xiang, K.; Carter, W.C.; Chiang, Y.M. Adv. Energy Mater. 2013, 3,290.
|
[33] |
Deng, C.; Zhang, S.; Dong, Z.; Shang, Y. Nano Energy 2014, 4,49.
|
[34] |
Zhao, B.; Wang, Q.; Zhang, S.; Deng, C. J. Mater. Chem. A 2015, 3,12089.
|
[35] |
Gu, T.; Zhou, M.; Liu, M.; Wang, K.; Cheng, S.; Jiang, K. RSC Adv. 2016, 6,53319.
|
[36] |
Yin, F.; Liu, Z.; Yang, S.; Shan, Z.; Zhao, Y.; Feng, Y.; Zhang, C.; Bakenov, Z. Nanoscale Res. Lett. 2017, 12,569.
|
[37] |
Lim, H.; Jung, J.H.; Park, Y.M.; Lee, H.N.; Kim, H.J. Appl. Surf. Sci. 2018, 446,131.
|
[38] |
Yee, G.; Shanbhag, S.; Wu, W.; Carlisle, K.; Chang, J.; Whitacre, J.F. Electrochem. Commun. 2018, 86,104.
|
[39] |
Wang, Y.; Feng, Z.; Laul, D.; Zhu, W.; Provencher, M.; Trudeau, M.L.; Guerfi, A.; Zaghib, K. J. Power Sources 2018, 374,211.
|
[40] |
Chua, R.; Cai, Y.; Kou, Z.K.; Satish, R.; Ren, H.; Chan, J.J.; Zhang, L.; Morris, S.A.; Bai, J.; Srinivasan, M. Chem. Eng. J. 2019, 370,742.
|
[41] |
Whitacre, J.F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463.
|
[42] |
Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y.S.; Yang, W.; Kang, K.; Li, H.; Yang, X.Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6,6401.
|
[43] |
Wang, Y.; Mu, L.; Liu, J.; Yang, Z.; Yu, X.; Gu, L.; Hu, Y.S.; Li, H.; Yang, X.Q.; Chen, L.; Huang, X. Adv. Energy Mater. 2015, 5,1501005.
|
[44] |
Qiu, Y.; Yu, Y.; Xu, J.; Liu, Y.; Ou, M.; Sun, S.; Wei, P.; Deng, Z.; Xu, Y.; Fang, C.; Li, Q.; Han, J.; Huang, Y. J. Mater. Chem. A 2019, 7,24953.
|
[45] |
Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M.A.; Cresce, A.V.; Wang, F.; Yang, C.; Hu, Y.S.; Xu, K.; Wang, C. Adv. Energy Mater. 2017, 7,1701189.
|
[46] |
Zhang, F.; Li, W.; Xiang, X.; Sun, M. J. Electroanal. Chem. 2017, 802,22.
|
[47] |
Zhang, Y.; Ye, K.; Cheng, K.; Wang, G.; Cao, D. Electrochim. Acta 2014, 148,195.
|
[48] |
Karikalan, N.; Karuppiah, C.; Chen, S.-M.; Velmurugan, M.; Gnanaprakasam, P. Chem. Eur. J. 2017, 23,2379.
|
[49] |
Zhang, Y.; An, Y.; Jiang, J.; Dong, S.; Wu, L.; Fu, R.; Dou, H.; Zhang, X. Energy Technol. 2018, 6,2146.
|
[50] |
Shan, X.; Guo, F.; Charles, D.S.; Lebens-Higgins, Z.; Abdel Razek, S.; Wu, J.; Xu, W.; Yang, W.; Page, K.L.; Neuefeind, J.C.; Feygenson, M.; Piper, L.F. J.; Teng, X. Nat. Commun. 2019, 10,4975.
|
[51] |
Liu, Y.; Zhang, B.H.; Xiao, S.Y.; Liu, L.L.; Wen, Z.B.; Wu, Y.P. Electrochim. Acta 2014, 116,512.
|
[52] |
Liu, Y.; Qiao, Y.; Zhang, W.; Wang, H.; Chen, K.; Zhu, H.; Li, Z.; Huang, Y. J. Mater. Chem. A 2015, 3,7780.
|
[53] |
Zhang, X.; Hou, Z.; Li, X.; Liang, J.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2016, 4,856.
|
[54] |
Qu, Q.T.; Shi, Y.; Tian, S.; Chen, Y.H.; Wu, Y.P.; Holze, R. J. Power Sources 2009, 194,1222.
|
[55] |
Hou, Z.; Li, X.; Liang, J.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2015, 3,1400.
|
[56] |
Liu, Y.; Qiao, Y.; Lou, X.; Zhang, X.; Zhang, W.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8,14564.
|
[57] |
Liu, Y.; Qiao, Y.; Zhang, W.; Xu, H.; Li, Z.; Shen, Y.; Yuan, L.; Hu, X.; Dai, X.; Huang, Y. Nano Energy 2014, 5,97.
|
[58] |
Liu, Y.; Qiao, Y.; Zhang, W.; Huang, Y. 224th Electrochemical Society Interface Meeting, San Francisco, The Electrochemical Society, 2013, Abstract #382.
|
[59] |
He, B.; Man, P.; Zhang, Q.; Wang, C.; Zhou, Z.; Li, C.; Wei, L.; Yao, Y. Small 2019, 15,1905115.
|
[60] |
Wu, X.; Sun, M.; Guo, S.; Qian, J.; Liu, Y.; Cao, Y.; Ai, X.; Yang, H. ChemNanoMat 2015, 1,188.
|
[61] |
Shao, T.; Li, C.; Liu, C.; Deng, W.; Wang, W.; Xue, M.; Li, R. J. Mater. Chem. A 2019, 7,1749.
|
[62] |
Shao, M.; Wang, B.; Liu, M.; Wu, C.; Ke, F.S.; Ai, X.; Yang, H.; Qian, J. ACS Appl. Energy Mater. 2019, 2,5809.
|
[63] |
Nakamoto, K.; Sakamoto, R.; Ito, M.; Kitajou, A.; Okada, S. Electrochemistry 2017, 85,179.
|
[64] |
Hou, Z.; Zhang, X.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Mater. Today Energy 2019, 14,100337.
|
[65] |
Nakamoto, K.; Sakamoto, R.; Sawada, Y.; Ito, M.; Okada, S. Small Methods 2018,1800220.
|
[66] |
Han, J.; Zhang, H.; Varzi, A.; Passerini, S. ChemSusChem 2018, 11,3704.
|
[67] |
Hou, Z.; Zhang, X.; Li, X.; Zhu, Y.; Liang, J.; Qian, Y. J. Mater. Chem. A 2017, 5,730.
|
[68] |
Qiu, S.; Wu, X.; Wang, M.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z.; Xu, W.; Wang, Q.; Gu, M.; Wen, J.; Huang, Y.; Xu, Z.J.; Feng, Z. Nano Energy 2019, 64,103941.
|
[69] |
Jiang, L.; Liu, L.; Yue, J.; Zhang, Q.; Zhou, A.; Borodin, O.; Suo, L.; Li, H.; Chen, L.; Xu, K.; Hu, Y.S. Adv. Mater. 2019, 32,1904427.
|
[70] |
Bi, H.; Wang, X.; Liu, H.; He, Y.; Wang, W.; Deng, W.; Ma, X.; Wang, Y.; Rao, W.; Chai, Y.; Ma, H.; Li, R.; Chen, J.; Wang, Y.; Xue, M. Adv. Mater. 2020, 32,2000074.
|
[71] |
Fernández-Ropero, A.J.; Piernas-Muñoz, M.J.; Castillo-Martínez, E.; Rojo, T.; Casas-Cabanas, M. Electrochim. Acta 2016, 210,352.
|
[72] |
Wu, X.; Cao, Y.; Ai, X.; Qian, J.; Yang, H. Electrochem. Commun. 2013, 31,145.
|
[73] |
Shen, L.; Jiang, Y.; Liu, Y.; Ma, J.; Sun, T.; Zhu, N. Chem. Eng. J. 2020, 388,124228.
|
[74] |
Wang, B.; Wang, X.; Liang, C.; Yan, M.; Jiang, Y. ChemElectroChem 2019, 6,4848.
|
[75] |
Li, W.; Zhang, F.; Xiang, X.; Zhang, X. ChemElectroChem 2018, 5,350.
|
[76] |
Baster, D.; Oveisi, E.; Mettraux, P.; Agrawal, S.; Girault, H.H. Chem. Commun. 2019, 55,14633.
|
[77] |
Paulitsch, B.; Yun, J.; Bandarenka, A.S. ACS Appl. Mater. Interfaces 2017, 9,8107.
|
[78] |
Niu, L.; Chen, L.; Zhang, J.; Jiang, P.; Liu, Z. J. Power Sources 2018, 380,135.
|
[79] |
Wessells, C.D.; Peddada, S.V.; Huggins, R.A.; Cui, Y. Nano Lett. 2011, 11,5421.
|
[80] |
Wessells, C.D.; McDowell, M.T.; Peddada, S.V.; Pasta, M.; Huggins, R.A.; Cui, Y. ACS Nano 2012, 6,1688.
|
[81] |
Pasta, M.; Wessells, C.D.; Liu, N.; Nelson, J.; McDowell, M.T.; Huggins, R.A.; Toney, M.F.; Cui, Y. Nat. Commun. 2014, 5,3007.
|
[82] |
Jiang, P.; Lei, Z.; Chen, L.; Shao, X.; Liang, X.; Zhang, J.; Wang, Y.; Zhang, J.; Liu, Z.; Feng, J. ACS Appl. Mater. Interfaces 2019, 11,28762.
|
[83] |
Zhang, Q.; Man, P.; He, B.; Li, C.; Li, Q.; Pan, Z.; Wang, Z.; Yang, J.; Wang, Z.; Zhou, Z.; Lu, X.; Niu, Z.; Yao, Y.; Wei, L. Nano Energy 2020, 67,104212.
|
[84] |
Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113,6552.
|
[85] |
Yang, J.; Li, D.; Wang, X.; Zhang, X.; Xu, J.; Chen, J. Energy Storage Mater. 2020, 24,694.
|
[86] |
Zhang, Q.; Liao, C.; Zhai, T.; Li, H. Electrochim. Acta 2016, 196,470.
|
[87] |
Song, W.; Ji, X.; Zhu, Y.; Zhu, H.; Li, F.; Chen, J.; Lu, F.; Yao, Y.; Banks, C.E. ChemElectroChem 2014, 1,821.
|
[88] |
Zhang, L.; Huang, T.; Yu, A. J. Alloys Compd. 2015, 646,522.
|
[89] |
Lei, P.; Wang, Y.; Zhang, F.; Wan, X.; Xiang, X. ChemElectroChem 2018, 5,2482.
|
[90] |
Fernández-Ropero, A.J.; Saurel, D.; Acebedo, B.; Rojo, T.; Casas-Cabanas, M. J. Power Sources 2015, 291,40.
|
[91] |
Jeong, S.; Kim, B.H.; Park, Y.D.; Lee, C.Y.; Mun, J.; Tron, A. J. Alloys Compd. 2019, 784,720.
|
[92] |
Vujković, M.; Mentus, S. J. Power Sources 2014, 247,184.
|
[93] |
Jung, Y.H.; Lim, C.H.; Kim, J.H.; Kim, D.K. RSC Adv. 2014, 4,9799.
|
[94] |
Nakamoto, K.; Kano, Y.; Kitajou, A.; Okada, S. J. Power Sources 2016, 327,327.
|
[95] |
Lee, M.H.; Kim, S.J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K.Y.; Seong, W.M.; Park, H.; Kwon, G.; Lee, B.; Kang, K. Mater. Today 2019, 29,26.
|
[96] |
Fernández-Ropero, A.J.; Zarrabeitia, M.; Reynaud, M.; Rojo, T.; Casas-Cabanas, M. J. Phys. Chem. C 2017, 122,133.
|
[97] |
Liu, S.; Wang, L.; Liu, J.; Zhou, M.; Nian, Q.; Feng, Y.; Tao, Z.; Shao, L. J. Mater. Chem. A 2019, 7,248.
|
[98] |
Reber, D.; Kühnel, R.S.; Battaglia, C. ACS Mater. Lett. 2019, 1,44.
|
[99] |
Kumar, P.R.; Jung, Y.H.; Lim, C.H.; Kim, D.K. J. Mater. Chem. A 2015, 3,6271.
|
[100] |
Kumar, P.R.; Jung, Y.H.; Moorthy, B.; Kim, D.K. J. Electrochem. Soc. 2016, 163,A1484.
|
[101] |
Sharma, L.; Nakamoto, K.; Sakamoto, R.; Okada, S.; Barpanda, P. ChemElectroChem 2019, 6,444.
|
[102] |
Jung, Y.H.; Hong, S.T.; Kim, D.K. J. Electrochem. Soc. 2013, 160,A897.
|
[103] |
Nwanya, A.C.; Ndipingwi, M.M.; Ikpo, C.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. J. Electroanal. Chem. 2020, 858,113809.
|
[104] |
Qu, Q.T.; Liu, L.L.; Wu, Y.P.; Holze, R. Electrochim. Acta 2013, 96,8.
|
[105] |
Bae, K.L.; Kim, K. Int. J. Energy Res. 2017, 41,1335.
|
[106] |
Long, H.; Zeng, W.; Wang, H.; Qian, M.; Liang, Y.; Wang, Z. Adv. Sci. 2018, 5,1700634.
|
[107] |
Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Chem. Commun. 2009,836.
|
[108] |
Zhang, L.; Wang, X.; Deng, W.; Zang, X.; Liu, C.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Nanoscale 2018, 10,958.
|
[109] |
Shiprath, K.; Manjunatha, H.; Babu Naidu, K.C.; Khan, A.; Asiri, A.M.; Boddula, R. Mater. Chem. Phys. 2020, 248,122952.
|
[110] |
Li, X.; Zhu, X.; Liang, J.; Hou, Z.; Wang, Y.; Lin, N.; Zhu, Y.; Qian, Y. J. Electrochem. Soc. 2014, 161,A1181.
|
[111] |
Park, S.I.; Gocheva, I.; Okada, S.; Yamaki, J.I. J. Electrochem. Soc. 2011, 158,A1067.
|
[112] |
Lei, P.; Liu, K.; Wan, X.; Luo, D.; Xiang, X. Chem. Commun. 2019, 55,509.
|
[113] |
Pang, G.; Yuan, C.; Nie, P.; Ding, B.; Zhu, J.; Zhang, X. Nanoscale 2014, 6,6328.
|
[114] |
Wu, W.; Yan, J.; Wise, A.; Rutt, A.; Whitacre, J.F. 2014, 161,A561.
|
[115] |
Mohamed, A.I.; Sansone, N.J.; Kuei, B.; Washburn, N.R.; Whitacre, J.F. J. Electrochem. Soc. 2015, 162,A2201.
|
[116] |
Liu, Z.; An, Y.; Pang, G.; Dong, S.; Xu, C.; Mi, C.; Zhang, X. Chem. Eng. J. 2018, 353,814.
|
[117] |
Qin, H.; Song, Z.P.; Zhan, H.; Zhou, Y.H. J. Power Sources 2014, 249,367.
|
[118] |
Zhao, Q.; Lu, Y.; Chen, J. Adv. Energy Mater. 2017, 7,1601792.
|
[119] |
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.Y.; Liu, P.; Facchetti, A.; Yao, Y. Nature Mater. 2017, 16,841.
|
[120] |
Zhong, L.; Lu, Y.; Li, H.; Tao, Z.; Chen, J. ACS Sustainable Chem. Eng. 2018, 6,7761.
|
[121] |
Demir Cakan, R.; Palacin, M.R.; Croguennec, L. J. Mater. Chem. A 2019, 7,20519.
|
[122] |
Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350,938.
|
[123] |
Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J.F. J. Electrochem. Soc. 2015, 162,A803.
|
[124] |
Eftekhari, A. Adv. Energy Mater. 2018, 8,1801156.
|
[125] |
Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.Z.; Ma, Z.F. Energy Environ. Sci. 2017, 10,1075.
|
[126] |
Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. Chem. Rev. 2020, 120,6783.
|
[127] |
Kühnel, R.S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2020, 5,346.
|
[128] |
Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1,16129.
|
[129] |
Yamada, Y.; Yamada, A. Chem. Lett. 2017, 46,1056.
|
[130] |
Zheng, Q.; Miura, S.; Miyazaki, K.; Ko, S.; Watanabe, E.; Okoshi, M.; Chou, C.P.; Nishimura, Y.; Nakai, H.; Kamiya, T.; Honda, T.; Akikusa, J.; Yamada, Y.; Yamada, A. Angew. Chem. Int. Ed. 2019, 58,14202.
|
[131] |
Wojciechowski, J.; Kolanowski, Ł.; Bund, A.; Lota, G. J. Power Sources 2017, 368,18.
|
[132] |
Chen, Q.; Nuli, Y.; Yang, J.; Kailibinuer, K.; Wang, J. Acta Phys. -Chim. Sin. 2012, 28,2625. (in Chinese)
|
( 陈强, 努丽燕娜, 杨军, 凯丽比努尔·克日木, 王久林, 物理化学学报, 2012, 28,2625.)
|
|
[133] |
Gheytani, S.; Liang, Y.; Jing, Y.; Xu, J.Q.; Yao, Y. J. Mater. Chem. A 2016, 4,395.
|
[134] |
Kühnel, R.S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. Chem. Commun. 2016, 52,10435.
|
[135] |
Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P.; Liu, Z.; Peng, H. Adv. Mater. 2017, 29,1703882.
|
[136] |
Wen, Y.H.; Shao, L.; Zhao, P.C.; Wang, B.Y.; Cao, G.P.; Yang, Y.S. J. Mater. Chem. A 2017, 5,15752.
|
[137] |
Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V.A.; Li, T.; Hu, L. Nano Lett. 2016, 16,3616.
|
[138] |
Zhao, Y.; Hong, M.; Bonnet Mercier, N.; Yu, G.; Choi, H.C.; Byon, H.R. Nano Lett. 2014, 14,1085.
|
[139] |
Liu, T.; Cheng, X.; Yu, H.; Zhu, H.; Peng, N.; Zheng, R.; Zhang, J.; Shui, M.; Cui, Y.; Shu, J. Energy Storage Mater. 2019, 18,68.
|
[140] |
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3,1800272.
|
[141] |
Luo, J.Y.; Cui, W.J.; He, P.; Xia, Y.Y. Nature Chem. 2010, 2,760.
|
[142] |
Li, W.; Dahn, J.R.; Wainwright, D.S. Science 1994, 264,1115.
|
[143] |
Ren, X.; Li, D.; Zhao, Z.; Chen, G.; Zhao, K.; Kong, X.; Li, T. Acta Chim. Sinica 2020, 78,1268. (in Chinese)
|
( 任旭强, 李东林, 赵珍珍, 陈光琦, 赵坤, 孔祥泽, 李童心, 化学学报, 2020, 78,1268.)
|
|
[144] |
Gao, H.; Goodenough, J.B. Angew. Chem. Int. Ed. 2016, 55,12768.
|
[145] |
Zhang, F.; Li, W.; Xiang, X.; Sun, M. Chem. Eur. J. 2017, 23,12944.
|
[146] |
He, J.; Zhang, H.; Liu, X.; Lu, X. Acta Chim. Sinica 2020, 78,1069. (in Chinese)
|
( 何锦俊, 张昊喆, 刘晓庆, 卢锡洪, 化学学报, 2020, 78,1069.)
|
|
[147] |
Li, Z.; Wang, Z.; Ban, L.; Wang, J.; Lu, S. Acta Chim. Sinica 2019, 77,1115. (in Chinese)
|
( 李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77,1115.)
|
|
[148] |
Shan, X.; Charles, D.S.; Lei, Y.; Qiao, R.; Wang, G.; Yang, W.; Feygenson, M.; Su, D.; Teng, X. Nat. Commun. 2016, 7,13370.
|
[149] |
Chen, L.; Li, W.; Guo, Z.; Wang, Y.; Wang, C.; Che, Y.; Xia, Y. J. Electrochem. Soc. 2015, 162,A1972.
|
[150] |
Mohamed, A.I.; Whitacre, J.F. Electrochim. Acta 2017, 235,730.
|
[151] |
Liu, S.; Shao, L.Y.; Zhang, X.J.; Tao, Z.L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34,581. (in Chinese)
|
( 刘双, 邵涟漪, 张雪静, 陶占良, 陈军, 物理化学学报, 2018, 34,581.)
|
|
[152] |
Suo, L.; Oh, D.; Lin, Y.; Zhuo, Z.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z.; Kim, H.C.; Qi, Y.; Yang, W.; Pan, F.; Li, J.; Xu, K.; Wang, C. J. Am. Chem. Soc. 2017, 139,18670.
|
[153] |
Stojković, I.B.; Cvjetićanin, N.D.; Mentus, S.V. Electrochem. Commun. 2010, 12,371.
|
[154] |
Jin, S.; Jiang, Y.; Ji, H.; Yu, Y. Adv. Mater. 2018, 30,1802014.
|
[155] |
Yue, Y.; Liang, H. Small Methods 2018, 2,1800056.
|
[156] |
Wang, S.; Fan, X.; Cui, Y.; Gou, L.; Wang, X.; Li, D. Acta Chim. Sinica 2019, 77,551. (in Chinese)
|
( 王珊, 樊小勇, 崔宇, 苟蕾, 王新刚, 李东林, 化学学报, 2019, 77,551.)
|
|
[157] |
Luo, W.; Hayden, J.; Jang, S.-H.; Wang, Y.; Zhang, Y.; Kuang, Y.; Wang, Y.; Zhou, Y.; Rubloff, G.W.; Lin, C.F.; Hu, L. Adv. Energy Mater. 2018, 8,1702615.
|
[158] |
Li, C.; Wang, X.; Deng, W.; Liu, C.; Chen, J.; Li, R.; Xue, M. ChemElectroChem 2018, 5,3887.
|
[159] |
Zheng, J.; Tan, G.; Shan, P.; Liu, T.; Hu, J.; Feng, Y.; Yang, L.; Zhang, M.; Chen, Z.; Lin, Y.; Lu, J.; Neuefeind, J.C.; Ren, Y.; Amine, K.; Wang, L.W.; Xu, K.; Pan, F. Chem 2018, 4,2872.
|
[160] |
Wang, X.; Ding, J.; Chen, J.; Xue, M. J. Power Sources 2019, 441,227190.
|
[161] |
Wang, F.; Borodin, O.; Ding, M.S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W.; Greenbaum, S.; Xu, K.; Wang, C. Joule 2018, 2,927.
|
[162] |
McEldrew, M.; Goodwin, Z.A. H.; Kornyshev, A.A.; Bazant, M.Z. J. Phys. Chem. Lett. 2018, 9,5840.
|
[1] | Zhixiang Yuan, Hao Zhang, Sijia Hu, Botao Zhang, Jianjun Zhang, Guanglei Cui. Research Progress of Ion-initiated in situ Generated Solid Polymer Electrolytes for High-safety Lithium Batteries★ [J]. Acta Chimica Sinica, 2023, 81(8): 1064-1080. |
[2] | Yalan Zhang, Zhixiang Yuan, Hao Zhang, Jianjun Zhang, Guanglei Cui. Research Progress of High-energy-density Solid-state Lithium Ion Batteries Employing Ni-rich Ternary Cathodes [J]. Acta Chimica Sinica, 2023, 81(12): 1724-1738. |
[3] | Wanying Chang, Yingying Tan, Jingyi Wu, Yingjie Liu, Jinhai Cai, Chunyan Lai. Study on the Properties of Polyethylene Oxide Based Solid State Electrolyte Enhanced by Three-Dimensional Structured Li6.28La3Zr2Al0.24O12 [J]. Acta Chimica Sinica, 2023, 81(12): 1708-1715. |
[4] | Guanhua Zhang, Zihan Yang, Yue Ma. Effect of Mixing Strategy on Electrochemical Performance of Oxide/Sulfide Solid Electrolyte [J]. Acta Chimica Sinica, 2023, 81(10): 1387-1393. |
[5] | Shishuo Liang, Shusen Kang, Dong Yang, Jianhua Hu. Interficial Engineering of Lithium Metal Anode for Sulfide Solid State Batteries [J]. Acta Chimica Sinica, 2022, 80(9): 1264-1268. |
[6] | Xiaolan Xue, Yang Zhang, Meiyu Shi, Tianlin Li, Tianlong Huang, Jiqiu Qi, Fuxiang Wei, Yanwei Sui, Zhong Jin. Recent Progress on Organic Electrode Materials for Nonaqueous Magnesium Secondary Batteries [J]. Acta Chimica Sinica, 2022, 80(12): 1618-1628. |
[7] | Songwei Tian, Lixue Zhou, Bingqian Zhang, Jianjun Zhang, Xiaofan Du, Hao Zhang, Sijia Hu, Zhixiang Yuan, Pengxian Han, Suli Li, Wei Zhao, Xinhong Zhou, Guanglei Cui. Key Advances of High-voltage Solid-state Lithium Metal Batteries Based on Poly(ethylene oxide) Polymer Electrolytes [J]. Acta Chimica Sinica, 2022, 80(10): 1410-1423. |
[8] | Runzhou Gao, Guochang Li, Yiqun Chen, Yu Zeng, Jie Zhao, Qiang Wu, Lijun Yang, Xizhang Wang, Zheng Hu. Carbon Nanocages//Tungsten Trioxide Nanorods Supercapacitors with in situ Polymerized Gel Electrolytes [J]. Acta Chimica Sinica, 2021, 79(6): 755-762. |
[9] | Wanfei Li, Xin Li, Haiyan Fan, Jianhua Xiao, Qianqian Liu, Miao Cheng, Jing Hu, Tao Wei, Zhengying Wu, Yun Ling, Bo Liu, Yuegang Zhang. Progress of Non-Nucleophilic Electrolytes for Magnesium/Sulfur Battery [J]. Acta Chimica Sinica, 2021, 79(5): 628-640. |
[10] | Lu Zhang, Wenfeng Wang, Hongming Zhang, Shumin Han, Limin Wang. Research Progress and Challenge of Aqueous Zinc Ion Battery [J]. Acta Chimica Sinica, 2021, 79(2): 158-175. |
[11] | Zhi Chang, Yu Qiao, Huijun Yang, Han Deng, Xingyu Zhu, Ping He, Haoshen Zhou. Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes [J]. Acta Chimica Sinica, 2021, 79(2): 139-145. |
[12] | Jianxin Tian, Huijuan Guo, Jing Wan, Guixian Liu, Huijuan Yan, Rui Wen, Lijun Wan. In Situ/Operando Advances of Electrode Processes in Solid-state Lithium Batteries [J]. Acta Chimica Sinica, 2021, 79(10): 1197-1213. |
[13] | Qi-kun Feng, Dong-li Zhang, Chang Liu, Yong-xin Zhang, Zhi-min Dang. Preparation and Characterization of All-organic TPU/P(VDF-HFP) Flexible Composite Films with High Energy Storage [J]. Acta Chimica Sinica, 2021, 79(10): 1273-1280. |
[14] | Yu Zhe, Zhang Jianjun, Liu Tingting, Tang Ben, Yang Xiaoyan, Zhou Xinhong, Cui Guanglei. Research Progress and Perspectives of Localized High-concentration Electrolytes for Secondary Batteries [J]. Acta Chimica Sinica, 2020, 78(2): 114-124. |
[15] | Kang Shusen, Yang Chengxiang, Yang Zelin, Wu Ningning, Zhao Shan, Chen Xiaotao, Liu Fuliang, Shi Bin. Blending Based PEO-PAN-PMMA Gel Polymer Electrolyte Prepared by Spaying Casting for Solid-state Lithium Metal Batteries [J]. Acta Chimica Sinica, 2020, 78(12): 1441-1447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||