Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (11): 1303-1319.DOI: 10.6023/A21070345 Previous Articles Next Articles
Review
投稿日期:
2021-07-26
发布日期:
2021-09-17
通讯作者:
肖检, 彭羽
作者简介:
尚阳, 1995年出生于四川南充, 2018年在重庆邮电大学获得学士学位. 2018年至2021年, 在彭羽教授指导下攻读并获得硕士学位. 研究兴趣是木脂素天然产物的全合成. |
肖检, 1990年出生于四川巴中, 西南交通大学生命科学与工程学院助理研究员. 2018年在兰州大学功能有机分子化学国家重点实验室获得博士学位, 导师为彭羽教授. 2018年加入西南交通大学生命科学与工程学院化学系, 主要研究方向包括活性天然产物和药物分子的全合成、有机合成新方法发展等. |
王雅雯, 西南交通大学生命科学与工程学院教授. 2000、2005年在兰州大学分别获得学士和博士学位, 导师为刘伟生教授. 曾任兰州大学化学化工学院教授. 主要研究领域为小分子荧光探针的合成及生物成像、超分子化学等. |
彭羽, 西南交通大学生命科学与工程学院教授. 2000、2005年在兰州大学分别获得学士和博士学位, 导师为李卫东教授. 2008年至2009年在美国内华达大学里诺分校和加州大学圣芭芭拉分校做博士后研究, 合作导师为Liming Zhang教授. 曾任兰州大学化学化工学院和功能有机分子化学国家重点实验室教授. 主要研究领域为活性天然产物和药物分子的全合成、镍催化的还原环化新方法发展等. |
基金资助:
Yang Shang, Jian Xiao(), Yawen Wang, Yu Peng()
Received:
2021-07-26
Published:
2021-09-17
Contact:
Jian Xiao, Yu Peng
Supported by:
Share
Yang Shang, Jian Xiao, Yawen Wang, Yu Peng. Advances on Asymmetric Construction of Diarylmethine Stereocenters[J]. Acta Chimica Sinica, 2021, 79(11): 1303-1319.
[1] |
Lindsay De Vane C.; Liston H. L.; Markowitz J. S. Clin Pharmacokinet. 2002, 41, 1247.
pmid: 12452737 |
[2] |
Hyttel J.; Larsen J. J. J. Neurochem. 1985, 44, 1615.
pmid: 2580950 |
[3] |
(a) Stähelin H. F.; von Wartburg A. Cancer Res. 1991, 51, 5.
pmid: 1988106 |
(b) Liu Y.-Q.; Yang L.; Tian X. Curr. Bioact. Compd. 2007, 3, 37.
doi: 10.2174/157340707780126499 pmid: 1988106 |
|
[4] |
Sakai M.; Hayashi H.; Miyaura N. Organometallics 1997, 16, 4229.
doi: 10.1021/om9705113 |
[5] |
Hayashi T.; Tokunaga N.; Okamoto K.; Shintani R. Chem. Lett. 2005, 34, 1480.
doi: 10.1246/cl.2005.1480 |
[6] |
Paquin J.-F.; Defieber C.; Stephenson C. R. J.; Carreira E. M. J. Am. Chem. Soc. 2005, 127, 10850.
doi: 10.1021/ja053270w |
[7] |
Yao J.; Yin L.; Shen Y.; Lu T.; Hayashi T.; Dou X. Org. Lett. 2018, 20, 6882.
doi: 10.1021/acs.orglett.8b03021 |
[8] |
Wang Z.-Q.; Feng C.-G.; Zhang S.-S.; Xu M.-H.; Lin G.-Q. Angew. Chem. Int. Ed. 2010, 49, 5780.
doi: 10.1002/anie.v49:33 |
[9] |
Lang F.; Chen G.; Li L.; Xing J.; Han F.; Cun L.; Liao J. Chem. Eur. J. 2011, 17, 5242.
doi: 10.1002/chem.v17.19 |
[10] |
Jumde V. R.; Iuliano A. Adv. Synth. Catal. 2013, 355, 3475.
doi: 10.1002/adsc.201300619 |
[11] |
He Q.; Xie F.; Fu G.; Quan M.; Shen C.; Yang G.; Gridnev I. D.; Zhang W. Org. Lett. 2015, 17, 2250.
doi: 10.1021/acs.orglett.5b00863 |
[12] |
Bao X.; Cao Y.-X.; Chu W.-D.; Qu H.; Du J.-Y.; Zhao X.-H.; Ma X.-Y.; Wang C.-T.; Fan C.-A. Angew. Chem. Int. Ed. 2013, 52, 14167.
doi: 10.1002/anie.201307324 |
[13] |
(a) Wang J.; Wang M.; Cao P.; Jiang L.; Chen G.; Liao J. Angew. Chem. Int. Ed. 2014, 53, 6673.
doi: 10.1002/anie.201403325 |
(b) Han Z.; Wang Z.; Zhang X.; Ding K. Angew. Chem. Int. Ed. 2009, 48, 5345.
doi: 10.1002/anie.200901630 |
|
[14] |
Lee A.; Kim H. J. Am. Chem. Soc. 2015, 137, 11250.
doi: 10.1021/jacs.5b07034 |
[15] |
(a) Takatsu K.; Shintani R.; Hayashi T. Angew. Chem. Int. Ed. 2011, 50, 5548.
doi: 10.1002/anie.201008196 |
(b) Davies H. M.; Gregg T. M. Tetrahedron Lett. 2002, 43, 4951.
doi: 10.1016/S0040-4039(02)00941-3 |
|
[16] |
Shih J.-L.; Nguyen T. S.; May J. A. Angew. Chem. Int. Ed. 2015, 54, 9931.
doi: 10.1002/anie.v54.34 |
[17] |
Ming J.; Hayashi T. Org. Lett. 2016, 18, 6452.
doi: 10.1021/acs.orglett.6b03347 |
[18] |
Wu C.; Yue G.; Nielsen C. D.-T.; Xu K.; Hirao H.; Zhou J. J. Am. Chem. Soc. 2016, 138, 742.
doi: 10.1021/jacs.5b11441 |
[19] |
Paras N. A.; MacMillan D. W. C. J. Am. Chem. Soc. 2002, 124, 7894.
pmid: 12095321 |
[20] |
Hong L.; Wang L.; Sun W.; Wong K.; Wang R. J. Org. Chem. 2009, 74, 6881.
doi: 10.1021/jo901409d |
[21] |
Zhang H.; Liao Y.-H.; Yuan W.-C.; Zhang X.-M. Eur. J. Org. Chem. 2010, 3215.
|
[22] |
Evans D. A.; Barotroli J.; Shih T. L. J. Am. Chem. Soc. 1981, 103, 2127.
doi: 10.1021/ja00398a058 |
[23] |
Xiao J.; Cong X.-W.; Yang G.-Z.; Wang Y.-W.; Peng Y. Org. Lett. 2018, 20, 1651.
doi: 10.1021/acs.orglett.8b00408 |
[24] |
(a) Peng Y.; Luo Z.-B.; Zhang J.-J.; Luo L.; Wang Y.-W. Org. Biomol. Chem. 2013, 11, 7574.
doi: 10.1039/c3ob41672k pmid: 27658859 |
(b) Zhang J.-J.; Yan C.-S.; Peng Y.; Luo Z.-B.; Xu X.-B.; Wang Y.-W. Org. Biomol. Chem. 2013, 11, 2498.
doi: 10.1039/c3ob00053b pmid: 27658859 |
|
(c) Peng Y.; Xiao J.; Xu X.-B.; Duan S.-M.; Ren L.; Shao Y.-L.; Wang Y.-W. Org. Lett. 2016, 18, 5170.
pmid: 27658859 |
|
(d) Luo Z.-B.; Wang Y.-W.; Peng Y. Org. Biomol. Chem. 2020, 18, 2054.
doi: 10.1039/D0OB00376J pmid: 27658859 |
|
[25] |
(a) Chu W.-D.; Zhang L.-F.; Bao X.; Zhao X.-H; Zeng C.; Du J.-Y.; Zhang G.-B.; Wang F.-X.; Ma X.-Y.; Fan C.-A. Angew. Chem. Int. Ed. 2013, 52, 9229.
doi: 10.1002/anie.201303928 |
(b) Lou Y.; Cao P.; Jia T.; Zhang Y.; Wang M.; Liao J. Angew. Chem. Int. Ed. 2015, 54, 12134.
doi: 10.1002/anie.201505926 |
|
(c) Li S.; Liu Y.; Huang B.; Zhou T.; Tao H.; Xiao Y.; Liu L.; Zhang J. ACS Catal. 2017, 7, 2805.
doi: 10.1021/acscatal.7b00030 |
|
(d) Caruana L.; Kniep F.; Johansen T. K.; Poulsen P. H.; Jørgensen K. A. J. Am. Chem. Soc. 2014, 136, 15929.
doi: 10.1021/ja510475n |
|
(e) Li X.; Xu X.; Wei W.; Lin A.; Yao H. Org. Lett. 2016, 18, 428.
doi: 10.1021/acs.orglett.5b03471 |
|
(f) Wen W.; Luo M.-J.; Yuan Y.; Liu J.-H.; Wu Z.-L.; Cai T.; Wu Z.-W.; Ouyang Q.; Guo Q.-X. Nat. Commun. 2020, 11, 5372.
doi: 10.1038/s41467-020-19245-3 |
|
[26] |
(a) Falciola C. A.; Alexakis A. Angew. Chem. Int. Ed. 2007, 46, 2619;
doi: 10.1002/(ISSN)1521-3773 |
(b) Kacprzynski M. A.; May T. L.; Kazane S. A. Hoveyda A. H. Angew. Chem. Int. Ed. 2007, 46, 4554.
doi: 10.1002/(ISSN)1521-3773 |
|
[27] |
Shintani R.; Takatsu K.; Takeda M.; Hayashi T. Angew. Chem. Int. Ed. 2011, 50, 8656.
doi: 10.1002/anie.201103581 |
[28] |
Tian H.; Zhang P.; Peng F.; Yang H.; Fu H. Org. Lett. 2017, 19, 3775.
doi: 10.1021/acs.orglett.7b01631 pmid: 28661154 |
[29] |
Shao L.; Hu X.-P. Org. Biomol. Chem. 2017, 15, 9837.
doi: 10.1039/C7OB02133J |
[30] |
(a) Cheng R.; Sang X.; Gao X.; Zhang S.; Xue X.; Zhang X. Angew. Chem. Int. Ed. 2021, 60, 12386.
doi: 10.1002/anie.v60.22 |
(b) Li X.; Gao X.; He C.; Zhang X. Org. Lett. 2021, 23, 1400.
doi: 10.1021/acs.orglett.1c00058 |
|
(c) Weix D. J. Acc. Chem. Res. 2015, 48, 1767.
doi: 10.1021/acs.accounts.5b00057 |
|
(d) Ackerman L. K. G.; Lovell M. M.; Weix D. J. Nature 2015, 524, 454.
doi: 10.1038/nature14676 |
|
(e) León T.; Correa A.; Martin R. Nature 2017, 545, 84.
doi: 10.1038/nature22316 |
|
(f) Li Z.-Q.; Wu D.; Ding C.; Yin G.-Y. CCS Chem. 2020, 2, 576.
|
|
(g) Belal M.; Li Z.-Q.; Lu X.-Q.; Yin G.-Y. Sci. China Chem. 2021, 64, 513.
doi: 10.1007/s11426-020-9910-2 |
|
[31] |
(a) Sun D.; Ma G.; Zhao X.; Lei C.; Gong H. Chem. Sci. 2021, 12, 5253.
doi: 10.1039/D1SC00283J |
(b) Pan Q.; Ping Y.; Wang Y.; Guo Y.; Kong W. J. Am. Chem. Soc. 2021, 143, 10282.
doi: 10.1021/jacs.1c03827 |
|
(c) DeLano T. J.; Dibrell S. E.; Lacker C. R.; Pancoast A. R.; Poremba K. E.; Cleary L.; Sigman M. S.; Reisman S. E. Chem. Sci. 2021, 12, 7758.
doi: 10.1039/D1SC00822F |
|
(d) Fan P.; Lan Y.; Zhang C.; Wang C. J. Am. Chem. Soc. 2020, 142, 2180.
doi: 10.1021/jacs.9b12554 |
|
(e) Wang Z.; Yang Z.-P.; Fu G. C. Nat. Chem. 2021, 13, 236.
doi: 10.1038/s41557-020-00609-7 |
|
[32] |
(a) Do H.-Q.; Chandrashekar E. R. R.; Fu G. C. J. Am. Chem. Soc. 2013, 135, 16288.
doi: 10.1021/ja408561b pmid: 23039358 |
(b) Wilsily A.; Tramutola F.; Owston N. A.; Fu G. C. J. Am. Chem. Soc. 2012, 134, 5794.
doi: 10.1021/ja301612y pmid: 23039358 |
|
(c) Binder J. T.; Cordier C. J.; Fu G. C. J. Am. Chem. Soc. 2012, 134, 17003.
doi: 10.1021/ja308460z pmid: 23039358 |
|
[33] |
Woods B. P.; Orlandi M.; Huang C.-Y.; Sigman M. S.; Doyle A. G. J. Am. Chem. Soc. 2017, 139, 5688.
doi: 10.1021/jacs.7b03448 |
[34] |
(a) Poremba K. E.; Kadunce N. T.; Suzuki N.; Cherney A. H.; Reisman S. E. J. Am. Chem. Soc. 2017, 139, 5684.
doi: 10.1021/jacs.7b01705 pmid: 23634932 |
(b) Cherney A. H.; Kadunce N. T.; Reisman S. E. J. Am. Chem. Soc. 2013, 135, 7442.
doi: 10.1021/ja402922w pmid: 23634932 |
|
[35] |
(a) Li B.; Aliyu M. A.; Gao Z.; Li T.; Dong W.; Li J.; Shi E.; Tang W. Org. Lett. 2020, 22, 4974.
doi: 10.1021/acs.orglett.0c01489 |
(b) Huang K.-C.; Gopula B.; Kuo T.-S.; Chiang C.-W.; Wu P.-Y.; Henschke J. P.; Wu H.-L. Org. Lett. 2013, 15, 5730.
doi: 10.1021/ol4027599 |
|
[36] |
(a) Yue G.; Lei K.; Hirao H.; Zhou J. Angew. Chem. Int. Ed. 2015, 54, 6531.
doi: 10.1002/anie.201501712 |
(b) Qin X.; Lee M. W. Y.; Zhou J. Org. Lett. 2019, 21, 5990. For a review, see:
doi: 10.1021/acs.orglett.9b02130 |
|
(c) Oxtoby L. J.; Gurak J. A. Jr.; Wisniewski S. R.; Eastgate M. D.; Engle K. M. Trends Chem. 2019, 1, 572.
doi: 10.1016/j.trechm.2019.05.007 |
|
[37] |
Chen G.; Gong W.; Zhuang Z.; Andrä M. S.; Chen Y.-Q.; Hong X.; Yang Y.-F.; Liu T.; Houk K. N.; Yu J. Q. Science 2016, 353, 1023.
doi: 10.1126/science.aaf4434 |
[38] |
Zhang W.; Wu L.; Chen P.; Liu G. Angew. Chem. Int. Ed. 2019, 58, 6425.
doi: 10.1002/anie.v58.19 |
[39] |
Cheng X.; Lu H.; Lu Z. Nature Commun. 2019, 10, 3549.
doi: 10.1038/s41467-019-11392-6 |
[40] |
Yamamoto E.; Hilton M. J.; Orlandi M.; Saini V.; Toste F. D.; Sigman M. S. J. Am. Chem. Soc. 2016, 138, 15877.
pmid: 27960315 |
[41] |
(a) Wu L.; Wang F.; Wan X.; Wang D.; Chen P.; Liu G. J. Am. Chem. Soc. 2017, 139, 2904.
doi: 10.1021/jacs.6b13299 |
(b) Wang D.; Wu L.; Wang F.; Wan X.; Chen P.; Lin Z.; Liu G. J. Am. Chem. Soc. 2017, 139, 6811.
doi: 10.1021/jacs.7b02455 |
|
[42] |
Chen B.; Cao P.; Yin X.; Liao Y.; Jiang L.; Ye J.; Wang M.; Liao J. ACS Catal. 2017, 7, 2425.
doi: 10.1021/acscatal.7b00300 |
[43] |
Anthony D.; Lin Q.; Baudet J.; Diao T. Angew. Chem. Int. Ed. 2019, 58, 3198.
doi: 10.1002/anie.v58.10 |
[44] |
Sakurai S.; Matsumoto A.; Kano T.; Maruoka K. J. Am. Chem. Soc. 2020, 142, 19017.
doi: 10.1021/jacs.0c09008 |
[45] |
Song S.; Zhu S.-F.; Yu Y.-B.; Zhou Q.-L. Angew. Chem. Int. Ed. 2013, 52, 1556.
doi: 10.1002/anie.201208606 |
[46] |
Li Y.; Dong K.; Wang Z.; Ding K. Angew. Chem. Int. Ed. 2013, 52, 6748.
doi: 10.1002/anie.v52.26 |
[47] |
Nie H.; Zhu Y.; Hu X.; Wei Z.; Yao L.; Zhou G.; Wang P.; Jiang R.; Zhang S. Org. Lett. 2019, 21, 8641.
doi: 10.1021/acs.orglett.9b03251 |
[48] |
Xu B.; Li M.-L.; Zuo X.-D.; Zhu S.-F.; Zhou Q.-L. J. Am. Chem. Soc. 2015, 137, 8700.
doi: 10.1021/jacs.5b05086 |
[49] |
Zhu D.-X.; Xia H.; Liu J.-G.; Chung L.-W.; Xu M.-H. J. Am. Chem. Soc. 2021, 143, 2608.
doi: 10.1021/jacs.0c13191 |
[50] |
Guo Q. Chin. J. Org. Chem. 2019, 39, 2912. (in Chinese)
doi: 10.6023/cjoc201902026 |
( 郭庆君, 有机化学 2019, 39, 2912.)
doi: 10.6023/cjoc201902026 |
[1] | Shuang Yang, Ningyi Wang, Qingqing Hang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxyphenyl Substituted p-Quinone Methides★ [J]. Acta Chimica Sinica, 2023, 81(7): 793-808. |
[2] | Zeng Chongyang, Hu Ping, Wang Biqin, Fang Wenyan, Zhao Keqing, Donnio Bertrand. Star-shaped Triphenylene-triazine Multi-stimuli Responsive Discotic Liquid Crystals: Synthesis, Properties and Applications [J]. Acta Chimica Sinica, 2023, 81(5): 469-479. |
[3] | Yuan Fangyan, Li Chao, Luo Meiming, Zeng Xiaoming. Chromium-Catalyzed Carbonyl-Carbonyl Deoxygenative Couplings of Ketones to Tetrasubstituted Olefins★ [J]. Acta Chimica Sinica, 2023, 81(5): 456-460. |
[4] | Mingliang Han, Lihua Xu. Progress on the Transition Metal-catalyzed Cross-coupling Reaction of Thioesters [J]. Acta Chimica Sinica, 2023, 81(4): 381-392. |
[5] | Yang Gao, Xuexin Zhang, Jinsheng Yu, Jian Zhou. Recent Advances in Catalytic Enantioselective Synthesis of α-Chiral Tertiary Azides★ [J]. Acta Chimica Sinica, 2023, 81(11): 1590-1608. |
[6] | Guanglu Yue, Jingyao Wei, Di Qiu, Fanyang Mo. Recent Advances in the Synthesis of Arylstannanes [J]. Acta Chimica Sinica, 2022, 80(7): 956-969. |
[7] | Yiding Wang, Fuhai Li, Qingle Zeng. Advances in Formation of C—X Bonds via Cleavage of C—N Bond of Quaternary Ammonium Salts [J]. Acta Chimica Sinica, 2022, 80(3): 386-394. |
[8] | Zhuoji Deng, Yifan Ouyang, Yunlin Ao, Qian Cai. Copper(I)-Catalyzed Asymmetric Desymmetric Intramolecular Alkenyl C—N Coupling Reaction [J]. Acta Chimica Sinica, 2021, 79(5): 649-652. |
[9] | Hongyu Yuan, Minmin Xu, Jianlin Yao. SERS Studies on the Electrochemical and SPR Synergistic Catalytic Interfacial Reaction of 4-Chlorothiophenol [J]. Acta Chimica Sinica, 2021, 79(12): 1481-1485. |
[10] | Yi Li, Ming-Hua Xu. Applications of Asymmetric Petasis Reaction in the Synthesis of Chiral Amines [J]. Acta Chimica Sinica, 2021, 79(11): 1345-1359. |
[11] | Zhu Ren-Yi, Liao Kui, Yu Jin-Sheng, Zhou Jian. Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Acta Chimica Sinica, 2020, 78(3): 193-216. |
[12] | Cheng Lei, Zhou Qilin. Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation [J]. Acta Chimica Sinica, 2020, 78(10): 1017-1029. |
[13] | Liu, Yu-Cheng, Zheng, Xiao, Huang, Pei-Qiang. Photoredox Catalysis for the Coupling Reaction of Nitrones with Aromatic Tertiary Amines [J]. Acta Chimica Sinica, 2019, 77(9): 850-855. |
[14] | Cai Qian, Ma Haowen. Recent Advances of Chiral Hypervalent Iodine Reagents [J]. Acta Chim. Sinica, 2019, 77(3): 213-230. |
[15] | Li Yue, Jiang Yuchen, Jiang Pingping, Du Shengyu, Jiang Jiusheng, Leng Yan. Molybdenum Nanocarbides Encapsulated in Porous Carbon Spheres for Solvent-free Benzyl Amine Oxidative Coupling Reactions [J]. Acta Chim. Sinica, 2019, 77(1): 66-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||