Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (5): 598-606.DOI: 10.6023/A22010003 Previous Articles Next Articles
Special Issue: 中国科学院青年创新促进会合辑
Article
投稿日期:
2022-01-03
发布日期:
2022-05-31
通讯作者:
李震宇
作者简介:
基金资助:
Sen Xua, Liling Wub, Zhenyu Lia,b()
Received:
2022-01-03
Published:
2022-05-31
Contact:
Zhenyu Li
About author:
Supported by:
Share
Sen Xu, Liling Wu, Zhenyu Li. Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling※[J]. Acta Chimica Sinica, 2022, 80(5): 598-606.
[1] |
Elm, J.; Kubečka, J.; Besel, V.; Jääskeläinen, M. J.; Halonen, R.; Kurtén, T.; Vehkamäki, H. J. Aerosol. Sci. 2020, 149, 105621.
doi: 10.1016/j.jaerosci.2020.105621 |
[2] |
Jahl, L. G.; Brubaker, T. A.; Polen, M. J.; Jahn, L. G.; Cain, K. P.; Bowers, B. B.; Fahy, W. D.; Graves, S.; Sullivan, R. C. Sci. Adv. 2021, 7, eabd3440.
doi: 10.1126/sciadv.abd3440 |
[3] |
Zhu, J.; Penner, J. E.; Yu, F.; Sillman, S.; Andreae, M. O.; Coe, H. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-018-07882-8 |
[4] |
He, X.-C.; Tham, Y. J.; Dada, L.; Wang, M.; Finkenzeller, H.; Stolzenburg, D.; Iyer, S.; Simon, M.; Kürten, A.; Shen, J. Science 2021, 371, 589.
doi: 10.1126/science.abe0298 |
[5] |
Zhang, B.; Yu, Y.; Zhang, Y.-Y.; Jiang, S.; Li, Q.; Hu, H.-S.; Li, G.; Zhao, Z.; Wang, C.; Xie, H. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 15423.
doi: 10.1073/pnas.2000601117 |
[6] |
Wyslouzil, B. E.; Wölk, J. J. Chem. Phys. 2016, 145, 211702.
doi: 10.1063/1.4962283 |
[7] |
Wölk, J.; Strey, R. J. Phys. Chem. B 2001, 105, 11683.
doi: 10.1021/jp0115805 |
[8] |
Viisanen, Y.; Strey, R.; Reiss, H. J. Chem. Phys. 1993, 99, 4680.
doi: 10.1063/1.466066 |
[9] |
Laaksonen, A.; Talanquer, V.; Oxtoby, D. W. Annu. Rev. Phys. Chem. 1995, 46, 489.
doi: 10.1146/annurev.pc.46.100195.002421 pmid: 24341941 |
[10] |
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.
doi: 10.1021/j100308a038 |
[11] |
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.
doi: 10.1063/1.445869 |
[12] |
Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
doi: 10.1063/1.1683075 |
[13] |
Abascal, J. L.; Vega, C. J. Chem. Phys. 2005, 123, 234505.
doi: 10.1063/1.2121687 |
[14] |
Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. J. Phys. Chem. Lett. 2014, 5, 3863.
doi: 10.1021/jz501780a |
[15] |
Zhao, M. Y.; Yang, X. P.; Yang, X. N. Acta Phys.-Chim. Sin. 2015, 31, 1489. (in Chinese)
|
(赵梦尧, 杨雪平, 杨晓宁, 物理化学学报, 2015, 31, 1489.)
|
|
[16] |
Sun, Y. R.; Yu, F.; Ma, J. Acta Phys.-Chim. Sin. 2017, 33, 2173. (in Chinese)
|
(孙怡然, 于飞, 马杰, 物理化学学报, 2017, 33, 2173.)
|
|
[17] |
Merikanto, J.; Vehkamäki, H.; Zapadinsky, E. J. Chem. Phys. 2004, 121, 914.
pmid: 15260623 |
[18] |
Behler, J.; Parrinello, M. Phys. Rev. Lett. 2007, 98, 146401.
doi: 10.1103/PhysRevLett.98.146401 |
[19] |
Bartók, A. P.; Csányi, G. Int. J. Quantum Chem. 2015, 115, 1051.
doi: 10.1002/qua.24927 |
[20] |
Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R. J. Chem. Phys. 2018, 148, 241722.
doi: 10.1063/1.5019779 |
[21] |
Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192.
doi: 10.1039/c6sc05720a pmid: 28507695 |
[22] |
Khorshidi, A.; Peterson, A. A. Comput. Phys. Commun. 2016, 207, 310.
doi: 10.1016/j.cpc.2016.05.010 |
[23] |
Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. WIREs Comput. Mol. Sci. 2019, 9, e1415.
|
[24] |
Kang, P.-L.; Shang, C.; Liu, Z.-P. Chin. J. Chem. Phys. 2021, 34, 583.
doi: 10.1063/1674-0068/cjcp2108145 |
[25] |
Wang, H.; Zhang, L.; Han, J.; Weinan, E. Comput. Phys. Commun. 2018, 228, 178.
doi: 10.1016/j.cpc.2018.03.016 |
[26] |
Kathmann, S. M.; Schenter, G. K.; Garrett, B. C. J. Chem. Phys. 1999, 111, 4688.
doi: 10.1063/1.479230 |
[27] |
Jorgensen, W. L.; Tirado-Rives, J. J. Phys. Chem. 1996, 100, 14508
doi: 10.1021/jp960880x |
[28] |
Chen, B.; Siepmann, J. I.; Oh, K. J.; Klein, M. L. J. Chem. Phys. 2001, 115, 10903.
|
[29] |
Paluch, A. S.; Shen, V. K.; Errington, J. R. Ind. Eng. Chem. Res. 2008, 47, 4533.
doi: 10.1021/ie800143n |
[30] |
Kästner, J. Wiley Interdiscip. Rev.- Comput. Mol. Sci. 2011, 1, 932.
doi: 10.1002/wcms.66 |
[31] |
Stillinger, Jr., F. H. J. Chem. Phys. 1963, 38, 1486.
doi: 10.1063/1.1776907 |
[32] |
Chen, B.; Siepmann, J. I.; Klein, M. L. J. Phys. Chem. A 2005, 109, 1137.
pmid: 16833423 |
[33] |
Oh, K.; Zeng, X. C. J. Chem. Phys. 2000, 112, 294.
|
[34] |
Kusaka, I.; Wang, Z.-G.; Seinfeld, J. H. J. Chem. Phys. 1998, 108, 3416.
|
[35] |
Loeffler, T. D.; Sepehri, A.; Chen, B. J. Chem. Theory Comput. 2015, 11, 4023.
doi: 10.1021/acs.jctc.5b00466 pmid: 26575898 |
[36] |
Wick, C. D.; Siepmann, J. I. Macromolecules 2000, 33, 7207.
doi: 10.1021/ma000172g |
[37] |
Siepmann, J. I. Mol. Phys. 1990, 70, 1145.
doi: 10.1080/00268979000101591 |
[38] |
Martin, M. G.; Frischknecht, A. L. Mol. Phys. 2006, 104, 2439.
doi: 10.1080/00268970600751078 |
[39] |
Kathmann, S. M.; Schenter, G. K.; Garrett, B. C.; Chen, B.; Siepmann, J. I. J. Phys. Chem. C 2009, 113, 10354.
doi: 10.1021/jp8092226 |
[40] |
Schenter, G. K.; Kathmann, S. M.; Garrett, B. C. Phys. Rev. Lett. 1999, 82, 3484.
doi: 10.1103/PhysRevLett.82.3484 |
[41] |
Schenter, G. K.; Kathmann, S. M.; Garrett, B. C. J. Chem. Phys. 1999, 110, 7951.
|
[42] |
Reiss, H.; Katz, J.; Cohen, E. J. Chem. Phys. 1968, 48, 5553.
doi: 10.1063/1.1668256 |
[43] |
Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266.
|
[44] |
Lee, J. K.; Barker, J.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166.
doi: 10.1063/1.1679638 |
[45] |
Crosby, L. D.; Kathmann, S. M.; Windus, T. L. J. Comput. Chem. 2009, 30, 743.
doi: 10.1002/jcc.21098 |
[46] |
Souaille, M.; Roux, B. Comput. Phys. Commun. 2001, 135, 40.
doi: 10.1016/S0010-4655(00)00215-0 |
[47] |
Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2013, 9, 1838.
doi: 10.1021/ct301010b |
[48] |
Devarajan, A.; Windus, T. L.; Gordon, M. S. J. Phys. Chem. A 2011, 115, 13987.
doi: 10.1021/jp207429r pmid: 21999817 |
[49] |
Scheiner, S. Annu. Rev. Phys. Chem. 1994, 45, 23.
pmid: 7811354 |
[50] |
Qian, P.; Song, W.; Lu, L.; Yang, Z. Int. J. Quantum Chem. 2010, 110, 1923.
doi: 10.1002/qua.22341 |
[51] |
Netzloff, H. M.; Gordon, M. S. J. Chem. Phys. 2004, 121, 2711.
pmid: 15281872 |
[52] |
Luzar, A.; Chandler, D. Phys. Rev. Lett. 1996, 76, 928.
pmid: 10061587 |
[53] |
Day, M. B.; Kirschner, K. N.; Shields, G. C. J. Phys. Chem. A 2005, 109, 6773.
doi: 10.1021/jp0513317 |
[54] |
Keutsch, F. N.; Saykally, R. J. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10533.
pmid: 11535820 |
[55] |
Qian, P.; Song, W.; Lu, L.; Yang, Z. Int. J. Quantum Chem. 2010, 110, 1923.
doi: 10.1002/qua.22341 |
[56] |
Lu, T. Molclus Program, Version 1.9.9.7, http://www.keinsci.com/research/molclus.html.
|
[57] |
Rodriguez, J.; Moriena, G.; Laria, D. Chem. Phys. Lett. 2002, 356, 147.
doi: 10.1016/S0009-2614(02)00381-0 |
[58] |
Zhang, L.; Han, J.; Wang, H.; Saidi, W. A.; Car, R. arXiv preprint arXiv:1805.09003. 2018.
|
[59] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01,Gaussian, Inc., Wallingford CT, 2016.
|
[60] |
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
|
[61] |
Yue, S.; Muniz, M. C.; Calegari Andrade, M. F.; Zhang, L.; Car, R.; Panagiotopoulos, A. Z. J. Chem. Phys. 2021, 154, 034111.
|
[1] | Duanda Wang, Xinyi Shen, Yongyang Song, Shutao Wang. Application Progress of Emerging Janus Particles for Oil-Water Separation★ [J]. Acta Chimica Sinica, 2023, 81(9): 1187-1195. |
[2] | Di Yang, Xiaofan Shi, Jijie Zhang, Xian-He Bu. Recent Research Progress and Prospect of Photothermal Materials in Seawater Desalination★ [J]. Acta Chimica Sinica, 2023, 81(8): 1052-1063. |
[3] | Wei Hou, Yancai Yao, Lizhi Zhang. Advances in Electrochemical Reductive Removal of Oxyanions in Water★ [J]. Acta Chimica Sinica, 2023, 81(8): 979-989. |
[4] | Huiying Zhang, Shuyan Yu, Congju Li. Electrocatalytic Degradation of Wastewater by Polymer-based Carbon Nanomembranes and Mechanism [J]. Acta Chimica Sinica, 2023, 81(4): 420-430. |
[5] | Wentao Wang, Xinting Lai, Shiquan Yan, Lei Zhu, Yuyuan Yao, Liming Ding. Synergistic Treatment of Dye Wastewater by the Adsorption-Degradation of a Bifunctional Aerogel [J]. Acta Chimica Sinica, 2023, 81(3): 222-230. |
[6] | Zhenhong Yang, Xiaojuan Gan, Shuzhe Wang, Junyuan Duan, Tianyou Zhai, Youwen Liu. Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★ [J]. Acta Chimica Sinica, 2023, 81(11): 1471-1477. |
[7] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[8] | Zipeng Qi, Dong Gao, Zhicheng Zhu, Zhiyuan He, Guoying Bai. Regulating Optical Properties of Water-Soluble Conjugated Polythiophene with Polyvinyl Alcohol [J]. Acta Chimica Sinica, 2022, 80(7): 921-928. |
[9] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[10] | Yuze Liu, Kunhua Li, Jiaxing Huang, Xi Yu, Wenping Hu. Accurate Prediction of the Boiling Point of Organic Molecules by Multi-Component Heterogeneous Learning Model [J]. Acta Chimica Sinica, 2022, 80(6): 714-723. |
[11] | Jinge Wang, Wei Zhou, Jiayi Li, Yani Ding, Jihui Gao. Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis [J]. Acta Chimica Sinica, 2022, 80(11): 1555-1568. |
[12] | Bolong Jiang, Yanyan Cui, Shunjie Shi, Nan Jiang, Weiqiang Tan. Preparation of Highly Active Transition Bimetallic Nitride NiMoN Hydrogen Evolution Reaction (HER) Catalyst and Its Performance Study in Seawater Electrolysis [J]. Acta Chimica Sinica, 2022, 80(10): 1394-1400. |
[13] | Ji Sun, Jiuqi Yi, Longjiu Cheng. Directional Monte Carlo Lattice Search Algorithm for the Structure Search of Alumina Clusters (Al2O3)n (n=1~50) [J]. Acta Chimica Sinica, 2021, 79(9): 1154-1163. |
[14] | Yilong Hua, Donghan Li, Tianhang Gu, Wei Wang, Ruofan Li, Jianping Yang, Wei-xian Zhang. Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect [J]. Acta Chimica Sinica, 2021, 79(8): 1008-1022. |
[15] | Lili Cai, Jingyi Wang, Xuefeng Zhu, Weishen Yang. Recent Progress on Mixed Conducting Oxygen Transport Membrane Reactors for Water Splitting Reaction [J]. Acta Chimica Sinica, 2021, 79(5): 588-599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||