Acta Chimica Sinica ›› 2009, Vol. 67 ›› Issue (4): 276-282. Previous Articles     Next Articles

Original Articles

2-(2-巯苯基)苯并噁唑分子内质子转移的理论研究

易平贵*,a 彭洪亮a 于贤勇a,b 汪朝旭a 唐臻强a 王 涛a

  

  1. (a湖南科技大学化学化工学院 分子构效关系湖南省普通高等学校重点实验室 湘潭 411201)
    (b厦门大学物理系 固体表面物理化学国家重点实验室 厦门 361005)

  • 投稿日期:2008-06-23 修回日期:2008-08-04 发布日期:2009-02-28
  • 通讯作者: 易平贵

Theoretical Study on Intramolecular Proton Transfer Reaction in 2-(2-Mercaptophenyl)benzoxazole

Yi, Pinggui *,a Peng, Hongliang a Yu, Xianyong a,b
Wang, Zhaoxu a Tang, Zhenqiang a Wang, Tao a

  

  1. (a Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering,
    Hunan University of Science and Technology, Xiangtan 411201)
    (b State Key Laboratory for Physical Chemistry of Solid Surface, Department of Physics,
    Xiamen University, Xiamen 361005)
  • Received:2008-06-23 Revised:2008-08-04 Published:2009-02-28
  • Contact: YI Ping-Gui

The tautomers (E1, E2, E3, E4, and K) and the ground state intramolecular proton transfer reaction of 2-(2-mercaptophenyl)benzoxazole were studied at the B3LYP/6-31G(d,p) level. The effect of solvent (water, dimethylsulfoxide, acetonitrile, ethanol, aniline, and cyclohexane) was studied at the B3LYP/6-31G (d,p) level, using the polarizable continuum model. The results of density functional calculations indicate that the enol form E1 is the most stable tautomer at the ground state. In these solvents there is an equilibrium for 2-(2-mercaptophenyl)benzoxazole in the ground state between E1 and K, and the equilibrium shifts toward the tautomer K as the polarity of the solvent increases. E1 is the preferential conformation in cyclohexane, but K is the more stable tautomer in water.

Key words: 2-(2-mercaptophenyl)benzoxazole, intramolecular proton transfer, density functional theory, polarizable continuum model