Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (7): 885-902.DOI: 10.6023/A21030126 Previous Articles Next Articles
Review
投稿日期:
2021-03-31
发布日期:
2021-05-11
通讯作者:
卢章辉
作者简介:
张安琪, 1997年出生, 2019年本科毕业于巢湖学院, 随后加入江西师范大学卢章辉教授课题组攻读硕士学位, 主要研究方向为纳米材料的可控合成及其在能源与催化领域的应用. |
姚淇露, 江西师范大学先进材料研究院助理研究员. 2017年于江西师范大学获得理学博士学位. 毕业后留校进入先进材料研究院工作. 主要研究方向为纳米材料的可控合成及其在能源与催化领域的应用. 以第一作者或通讯作者在国内外知名期刊发表SCI收录论文20余篇; 获授权发明专利5项; 获江西省自然科学奖一等奖(第二完成人). |
卢章辉, 江西师范大学化学化工学院教授/博导, 江西省赣鄱英才555工程领军人才. 2011年于日本国立神户大学获得博士学位, 2008年10月至2011年9月, 在日本产业技术综合研究所从事研究, 2011年10月至今在江西师范大学工作. 主要从事能源催化研究, 在国内外知名期刊发表SCI收录论文110篇, 被引4500余次, 获江西省自然科学奖一等奖(第一完成人). |
基金资助:
Anqi Zhang, Qilu Yao, Zhang-Hui Lu()
Received:
2021-03-31
Published:
2021-05-11
Contact:
Zhang-Hui Lu
Supported by:
Share
Anqi Zhang, Qilu Yao, Zhang-Hui Lu. Recent Progress on Catalysts for Hydrogen Evolution from Decomposition of Hydrous Hydrazine[J]. Acta Chimica Sinica, 2021, 79(7): 885-902.
Catalyst | T/℃ | TOF/h-1 | Hydrogen selectivity/% | Ref. |
---|---|---|---|---|
Pt | 25 | — | 0 | [ |
Pd | 25 | — | 0 | [ |
Cu | 25 | — | 0 | [ |
Fe | 25 | — | 0 | [ |
Ni | 25 | — | 0 | [ |
Co | 25 | — | 7 | [ |
Ru | 25 | — | 7 | [ |
Ir | 25 | — | 7 | [ |
Rh | 25 | — | 43.8 | [ |
Ni-Al2O3-HT | 30 | 2.0a | 93 | [ |
Ni/Al2O3-IMP | 30 | 2.86a,b | 66 | [ |
Ni-CeO2 | 30 | 51.6 | 99 | [ |
Raney Ni-300 | 30 | 162a,b | 99 | [ |
Ni/CeO2 | 50 | 34 | 100 | [ |
Ni@TNTs | 60 | 96a | 100 | [ |
Rh | 70 | — | 34 | [ |
Ir/Al2O3 | >200 | — | 100 | [ |
Ir/γ-Al2O3 | >200 | — | 100 | [ |
Ni-CeO2@SiO2 | 70 | 219.5 | 100 | [ |
Catalyst | T/℃ | TOF/h-1 | Hydrogen selectivity/% | Ref. |
---|---|---|---|---|
Pt | 25 | — | 0 | [ |
Pd | 25 | — | 0 | [ |
Cu | 25 | — | 0 | [ |
Fe | 25 | — | 0 | [ |
Ni | 25 | — | 0 | [ |
Co | 25 | — | 7 | [ |
Ru | 25 | — | 7 | [ |
Ir | 25 | — | 7 | [ |
Rh | 25 | — | 43.8 | [ |
Ni-Al2O3-HT | 30 | 2.0a | 93 | [ |
Ni/Al2O3-IMP | 30 | 2.86a,b | 66 | [ |
Ni-CeO2 | 30 | 51.6 | 99 | [ |
Raney Ni-300 | 30 | 162a,b | 99 | [ |
Ni/CeO2 | 50 | 34 | 100 | [ |
Ni@TNTs | 60 | 96a | 100 | [ |
Rh | 70 | — | 34 | [ |
Ir/Al2O3 | >200 | — | 100 | [ |
Ir/γ-Al2O3 | >200 | — | 100 | [ |
Ni-CeO2@SiO2 | 70 | 219.5 | 100 | [ |
Catalyst | T/℃ | TOF/h-1 | Hydrogen selectivity/% | Ref. |
---|---|---|---|---|
Ni0.6Pd0.4 | 25 | — | 7 | [ |
Ni30Fe30Pd40 | 25 | 4.0b | 100 | [ |
Ni0.95Ir0.05-CTAB | 25 | 3.08b | 100 | [ |
Ni0.6Pd0.4 | 25 | 20a,b | 100 | [ |
NiRh@rGO | 25 | 24.5b | 100 | [ |
CoIr0.081/γ-Al2O3 | 25 | 27.76 | 100 | [ |
Ni0.9Pt0.1/Ce2O3 | 25 | 28.1a | 100 | [ |
NiPtRh/La2O3 | 25 | 45.9a | 100 | [ |
Rh/Ni@SiO2 | 25 | 66a | 99.4 | [ |
Ni64Pt36/MIL-96 | 25 | 114.3a | 100 | [ |
(Ni3Pt7)0.5-(MnO x)0.5/NPC-900 | 25 | 120a | 100 | [ |
NiPt/NH2-MIL-101 | 25 | 137a | 100 | [ |
Ni60Pt40-SF-I | 25 | 150a | 100 | [ |
Co0.65Pt0.30(CeO x)0.05 | 25 | 194.8a | 72.1 | [ |
Ni0.7Pt0.3P/rGO | 25 | 224a | 100 | [ |
NiIr0.059/Al2O3 | 30 | 12.4a | 99 | [ |
Ni0.2Rh0.8@CeO x/rGO | 30 | 36.4b | 100 | [ |
Ni0.9Pt0.1/MIL-101 | 30 | 140a | 100 | [ |
Ni45Rh55/Ce(OH)CO3 | 30 | 150a | 100 | [ |
Ni40Pt60-CNDs | 30 | 170a | 100 | [ |
Ni60Pt40/CeO2 | 30 | 293 | 100 | [ |
Ni0.58Pt0.42/grapheme | 30 | 434a | 100 | [ |
CoPt/La(OH)3 | 30 | 734.2a | 100 | [ |
Ni0.4Pt0.6/PDA-rGO | 30 | 903a | 100 | [ |
Ni0.9Rh0.1 | 50 | 0.045b | 100 | [ |
Ni0.99Pt0.01 | 50 | 5.7b | 100 | [ |
Ni0.6Pd0.4 | 50 | 6.3b | 82 | [ |
NiRh@ZIF-8 | 50 | 140a | 100 | [ |
Ni3Rh7/NPC-900 | 50 | 156a | 100 | [ |
NiPt/C | 50 | 210a | 100 | [ |
Ni@Ni-Pt/La2O3 | 50 | 312a | 100 | [ |
Ni42Rh58@MIL-101 | 50 | 344a | 100 | [ |
Ni0.2Rh0.8/MIL-101 | 50 | 428.6 | 100 | [ |
NiIr/MIL-101 | 50 | 464a | 100 | [ |
RhNiP/rGO | 50 | 471a | 100 | [ |
NiIr/La2O2CO3 | 50 | 487a | 100 | [ |
Rh0.5(MoO x)0.5 | 50 | 750a | 100 | [ |
Ni0.6Pt0.4-MoO x | 50 | 822a | 100 | [ |
Rh92.6P7.4/rGO | 50 | 843.9a | 100 | [ |
Ni0.2Rh0.8/Mxene | 50 | 857a | 100 | [ |
NiPt/DT-Ti3C2T x | 50 | 1220a | 100 | [ |
Ni0.4Pt0.6@ZrO2/C/rGO | 50 | 1920a | 100 | [ |
CoPt/La(OH)3 | 50 | 2400a | 100 | [ |
Catalyst | T/℃ | TOF/h-1 | Hydrogen selectivity/% | Ref. |
---|---|---|---|---|
Ni0.6Pd0.4 | 25 | — | 7 | [ |
Ni30Fe30Pd40 | 25 | 4.0b | 100 | [ |
Ni0.95Ir0.05-CTAB | 25 | 3.08b | 100 | [ |
Ni0.6Pd0.4 | 25 | 20a,b | 100 | [ |
NiRh@rGO | 25 | 24.5b | 100 | [ |
CoIr0.081/γ-Al2O3 | 25 | 27.76 | 100 | [ |
Ni0.9Pt0.1/Ce2O3 | 25 | 28.1a | 100 | [ |
NiPtRh/La2O3 | 25 | 45.9a | 100 | [ |
Rh/Ni@SiO2 | 25 | 66a | 99.4 | [ |
Ni64Pt36/MIL-96 | 25 | 114.3a | 100 | [ |
(Ni3Pt7)0.5-(MnO x)0.5/NPC-900 | 25 | 120a | 100 | [ |
NiPt/NH2-MIL-101 | 25 | 137a | 100 | [ |
Ni60Pt40-SF-I | 25 | 150a | 100 | [ |
Co0.65Pt0.30(CeO x)0.05 | 25 | 194.8a | 72.1 | [ |
Ni0.7Pt0.3P/rGO | 25 | 224a | 100 | [ |
NiIr0.059/Al2O3 | 30 | 12.4a | 99 | [ |
Ni0.2Rh0.8@CeO x/rGO | 30 | 36.4b | 100 | [ |
Ni0.9Pt0.1/MIL-101 | 30 | 140a | 100 | [ |
Ni45Rh55/Ce(OH)CO3 | 30 | 150a | 100 | [ |
Ni40Pt60-CNDs | 30 | 170a | 100 | [ |
Ni60Pt40/CeO2 | 30 | 293 | 100 | [ |
Ni0.58Pt0.42/grapheme | 30 | 434a | 100 | [ |
CoPt/La(OH)3 | 30 | 734.2a | 100 | [ |
Ni0.4Pt0.6/PDA-rGO | 30 | 903a | 100 | [ |
Ni0.9Rh0.1 | 50 | 0.045b | 100 | [ |
Ni0.99Pt0.01 | 50 | 5.7b | 100 | [ |
Ni0.6Pd0.4 | 50 | 6.3b | 82 | [ |
NiRh@ZIF-8 | 50 | 140a | 100 | [ |
Ni3Rh7/NPC-900 | 50 | 156a | 100 | [ |
NiPt/C | 50 | 210a | 100 | [ |
Ni@Ni-Pt/La2O3 | 50 | 312a | 100 | [ |
Ni42Rh58@MIL-101 | 50 | 344a | 100 | [ |
Ni0.2Rh0.8/MIL-101 | 50 | 428.6 | 100 | [ |
NiIr/MIL-101 | 50 | 464a | 100 | [ |
RhNiP/rGO | 50 | 471a | 100 | [ |
NiIr/La2O2CO3 | 50 | 487a | 100 | [ |
Rh0.5(MoO x)0.5 | 50 | 750a | 100 | [ |
Ni0.6Pt0.4-MoO x | 50 | 822a | 100 | [ |
Rh92.6P7.4/rGO | 50 | 843.9a | 100 | [ |
Ni0.2Rh0.8/Mxene | 50 | 857a | 100 | [ |
NiPt/DT-Ti3C2T x | 50 | 1220a | 100 | [ |
Ni0.4Pt0.6@ZrO2/C/rGO | 50 | 1920a | 100 | [ |
CoPt/La(OH)3 | 50 | 2400a | 100 | [ |
Catalyst | T/℃ | TOF/h-1 | Hydrogen selectivity/% | Ref. |
---|---|---|---|---|
NiCoP1.5/SiO2 | 25 | 1.71 | 100 | [ |
NiCo/NiO-CoO x | 25 | 5.49 | 100 | [ |
Ni1.5Fe/(MgO)2.5 | 25 | 24b | 99 | [ |
Co4N-Al2O3 (HT) | 50 | — | 100 | [ |
NiFe/CeO2 | 50 | 5.73 | 99 | [ |
Ni0.6Fe0.4Mo | 50 | 28.8 | 100 | [ |
CuNiMo | 50 | 38.7 | 100 | [ |
CuNi/CeO2 | 50 | 1450a | 100 | [ |
Ni3Fe-(CeO x)0.15/rGO | 55 | 56.8a | 100 | [ |
Cu0.5Ni0.5/MCNS | 60 | 21.8 | 100 | [ |
NiFe | 70 | 6.3a,b | 100 | [ |
Cu@Fe5Ni5 | 70 | 20b | 100 | [ |
Ni4Mo@Cu2O | 70 | 71.4 | 100 | [ |
NiFe/LaZrO2 | 70 | 100.3a | 100 | [ |
NiFe/NdZrO2 | 70 | 103.7a | 100 | [ |
NiFe/CeZrO2 | 70 | 119.2a | 100 | [ |
Ni3Fe-(CeO x)0.15/rGO | 70 | 126.2a | 100 | [ |
Ni0.9Fe0.1-Cr2O3 | 70 | 893.5a | 100 | [ |
Catalyst | T/℃ | TOF/h-1 | Hydrogen selectivity/% | Ref. |
---|---|---|---|---|
NiCoP1.5/SiO2 | 25 | 1.71 | 100 | [ |
NiCo/NiO-CoO x | 25 | 5.49 | 100 | [ |
Ni1.5Fe/(MgO)2.5 | 25 | 24b | 99 | [ |
Co4N-Al2O3 (HT) | 50 | — | 100 | [ |
NiFe/CeO2 | 50 | 5.73 | 99 | [ |
Ni0.6Fe0.4Mo | 50 | 28.8 | 100 | [ |
CuNiMo | 50 | 38.7 | 100 | [ |
CuNi/CeO2 | 50 | 1450a | 100 | [ |
Ni3Fe-(CeO x)0.15/rGO | 55 | 56.8a | 100 | [ |
Cu0.5Ni0.5/MCNS | 60 | 21.8 | 100 | [ |
NiFe | 70 | 6.3a,b | 100 | [ |
Cu@Fe5Ni5 | 70 | 20b | 100 | [ |
Ni4Mo@Cu2O | 70 | 71.4 | 100 | [ |
NiFe/LaZrO2 | 70 | 100.3a | 100 | [ |
NiFe/NdZrO2 | 70 | 103.7a | 100 | [ |
NiFe/CeZrO2 | 70 | 119.2a | 100 | [ |
Ni3Fe-(CeO x)0.15/rGO | 70 | 126.2a | 100 | [ |
Ni0.9Fe0.1-Cr2O3 | 70 | 893.5a | 100 | [ |
[1] |
Gong, K.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
[2] |
Pan, Z. Y.; Tang, Z.; Zhan, Y. Z.; Sun, D. Tungsten 2020, 2, 390.
doi: 10.1007/s42864-020-00065-3 |
[3] |
He, B.; Ren, Y. X.; Dai, T. J. Rare Metals 2019, 40, 219.
doi: 10.1007/s12598-019-01344-w |
[4] |
Zhang, T. L.; Lu, Z. G.; Zhang, L. Y. Chin. Chem. Lett. 2020, 31, 3135.
doi: 10.1016/j.cclet.2020.07.010 |
[5] |
Liang, Z. B.; Zhao, R.; Qiu, T. J.; Zou, R. Q.; Xu, Q. EnergyChem 2019, 1, 100001.
doi: 10.1016/j.enchem.2019.100001 |
[6] |
Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.
doi: 10.1021/cr030691s |
[7] |
Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.
doi: 10.1038/35104634 |
[8] |
Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature 2002, 420, 302.
doi: 10.1038/nature01210 |
[9] |
Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. EnergyChem 2020, 2, 100027.
doi: 10.1016/j.enchem.2020.100027 |
[10] |
Li, W. H.; Deng, W. H.; Wang, G-E.; Xu, G. EnergyChem 2020, 2, 100029.
doi: 10.1016/j.enchem.2020.100029 |
[11] |
Zhang, X. T.; Chen, J. C.; Zhu, L.; Hao, S.; Jiang, D. M.; Xia, L. S. Appl. Chem. Ind. 2018, 47, 139. (in Chinese)
|
(张晓腾, 陈俊畅, 朱林, 郝帅, 蒋冬梅, 夏良树, 应用化工, 2018, 47, 139.)
|
|
[12] |
Xue, S. F.; Li, Y. J.; Zheng, F. H.; Bian, X.; Wu, W. Y.; Yang, C. H. Rare Metals 2021, 40, 31.
doi: 10.1007/s12598-020-01594-z |
[13] |
Cheng, Y.; Wu, X.; Xu, H. Sustain. Energy Fuels 2019, 3, 343.
doi: 10.1039/C8SE00538A |
[14] |
Zhan, J. J.; Chen, Z. H. Mater. Rep. 2007, 62, 66. (in Chinese)
|
(湛建阶, 陈朝辉, 材料导报, 2007, 62, 66.)
|
|
[15] |
Cho, S. J.; Lee, J.; Lee, Y. S.; Kim, D. P. Catal. Lett. 2006, 109, 181.
doi: 10.1007/s10562-006-0081-3 |
[16] |
Jang, Y. B.; Kim, T. H.; Sun, M. H.; Lee, J.; Cho, S. J. Catal. Today 2009, 146, 196.
doi: 10.1016/j.cattod.2009.01.040 |
[17] |
Singh, S. K.; Zhang, X.-B.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 9894.
doi: 10.1021/ja903869y |
[18] |
He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. Angew. Chem. Int. Ed. 2012, 51, 6191.
doi: 10.1002/anie.201201737 |
[19] |
He, L.; Liang, B.; Li, L.; Yang, X.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. ACS Catal. 2015, 5, 1623.
doi: 10.1021/acscatal.5b00143 |
[20] |
Kang, W.; Varma, A. Appl. Catal. B-Environ. 2018, 220, 409.
doi: 10.1016/j.apcatb.2017.08.053 |
[21] |
Yao, Q. L.; Lu, Z. H.; Yang, K. K. Sci. Rep. 2015, 5, 15186.
doi: 10.1038/srep15186 |
[22] |
Yao, Q.; Shi, W.; Feng, G.; Lu, Z.-H.; Zhang, X.; Tao, D.; Kong, D.; Chen, X. J. Power Sources 2014, 257, 293.
doi: 10.1016/j.jpowsour.2014.01.122 |
[23] |
Huang, M.; Yao, Q.; Feng, G.; Zou, H.; Lu, Z. H. Inorg. Chem. 2020, 59, 5781.
doi: 10.1021/acs.inorgchem.0c00600 |
[24] |
Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nature Mater. 2007, 6, 507.
doi: 10.1038/nmat1916 |
[25] |
Wang, H.; Wu, L.; Jia, A.; Li, X.; Shi, Z.; Duan, M.; Wang, Y. Chem. Eng. J. 2018, 332, 637.
doi: 10.1016/j.cej.2017.09.126 |
[26] |
Zhang, S.; Yao, Q.; Li, Q.; Feng, G.; Lu, Z. H. Energy Technol. 2019, 7, 1800533.
doi: 10.1002/ente.v7.3 |
[27] |
He, L.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. AICHE J. 2013, 59, 4297.
doi: 10.1002/aic.v59.11 |
[28] |
Wang, H.; Wu, L.; Wang, Y.; Li, X.; Wang, Y. Catal. Commun. 2017, 100, 33.
doi: 10.1016/j.catcom.2017.06.021 |
[29] |
Kim, Y.; Kwon, K. Y. Bull. Korean Chem. Soc. 2019, 40, 1167.
doi: 10.1002/bkcs.v40.12 |
[30] |
Wang, Z. L.; Yan, J. M.; Ping, Y.; Wang, H. L.; Zheng, W. T.; Jiang, Q. Angew. Chem. Int. Ed. 2013, 52, 4406.
doi: 10.1002/anie.201301009 |
[31] |
Lu, Z.-H.; Yao, Q.; Zhang, Z.; Yang, Y.; Chen, X. J. Nanomater. 2014, 2014, 1.
|
[32] |
Kang, Y.; Xue, Q.; Peng, R.; Jin, P.; Zeng, J.; Jiang, J.; Chen, Y. NPG Asia Mater. 2017, 9, 407.
|
[33] |
Liu, M.; Zheng, Y.; Xie, S.; Li, N.; Lu, N.; Wang, J.; Kim, M. J.; Guo, L.; Xia, Y. Phys. Chem. Chem. Phys. 2013, 15, 11822.
doi: 10.1039/c3cp51950c |
[34] |
Singh, S. K.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 18032.
doi: 10.1021/ja908037t |
[35] |
Singh, A. K.; Yadav, M.; Aranishi, K.; Xu, Q. Int. J. Hydrogen Energy 2012, 37, 18915.
doi: 10.1016/j.ijhydene.2012.09.104 |
[36] |
Zhong, D.-C.; Mao, Y.-L.; Tan, X.; Zhong, P.; Liu, L.-X. Int. J. Hydrogen Energy 2016, 41, 6362.
doi: 10.1016/j.ijhydene.2016.02.109 |
[37] |
Zhang, Z. J.; Wang, Y. Q.; Chen, X. S.; Lu, Z. H. J. Power Sources 2015, 291, 14.
doi: 10.1016/j.jpowsour.2015.05.012 |
[38] |
Wang, J.; Zhang, X.-B.; Wang, Z.-L.; Wang, L.-M.; Zhang, Y. Energy Environ. Sci. 2012, 5, 6885.
doi: 10.1039/c2ee03344e |
[39] |
Hou, T.; Luo, Q.; Li, Q. Nat. Commun. 2020, 11, 4251.
doi: 10.1038/s41467-020-18091-7 |
[40] |
Chen, S. Nanoscale 2018, 10, 20043.
doi: 10.1039/c8nr05760e pmid: 30324961 |
[41] |
Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61.
doi: 10.1016/j.elecom.2012.01.002 |
[42] |
Kang, K. M. ACS Appl. Mater. Inter. 2017, 9, 44687.
doi: 10.1021/acsami.7b10932 |
[43] |
Kim, S. J. ACS Nano 2018, 12, 986.
doi: 10.1021/acsnano.7b07460 |
[44] |
Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater 2018, 28, 1800136.
doi: 10.1002/adfm.v28.21 |
[45] |
Liu, T.; Wang, Q.; Yuan, J.; Zhao, X.; Gao, G. ChemCatChem 2018, 10, 2200.
doi: 10.1002/cctc.v10.10 |
[46] |
Yin, B.; Wang, Q. T.; Liu, T.; Gao, G. H. New J. Chem. 2018, 42, 20001.
doi: 10.1039/C8NJ04766A |
[47] |
Zhang, Z.; Lu, Z.-H.; Tan, H.; Chen, X.; Yao, Q. J. Mater. Chem. A 2015, 3, 23520.
doi: 10.1039/C5TA06197K |
[48] |
Chen, J.; Yao, Q.; Zhu, J.; Chen, X.; Lu, Z.-H. Int. J. Hydrogen Energy 2016, 41, 3946.
doi: 10.1016/j.ijhydene.2015.12.158 |
[49] |
Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652.
doi: 10.1002/cctc.201200591 |
[50] |
Yao, Q.; Lu, Z. H.; Hu, Y. J.; Chen, X. S. RSC Adv. 2016, 6, 89450.
doi: 10.1039/C6RA19126F |
[51] |
Hu, Y.; Wang, Y.; Lu, ZH.; Chen, X.; Xiong, L. Appl. Surf. Sci. 2015, 341, 185.
doi: 10.1016/j.apsusc.2015.02.094 |
[52] |
Yoo, J. B.; Kim, H. S.; Kang, S. H.; Lee, B.; Hur, N. H. J. Mater. Chem. A 2014, 2, 18929.
doi: 10.1039/C4TA03550J |
[53] |
Gu, X.; Lu, Z. H.; Xu, Q. Chem. Commun. 2010, 46, 7400.
doi: 10.1039/c0cc02808h |
[54] |
Li, X. G.; Zhang, C. L.; Luo, M. H.; Yao, Q. L.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 1298.
doi: 10.1039/D0QI00073F |
[55] |
Xia, B.; Cao, N.; Dai, H.; Su, J.; Wu, X.; Luo, W.; Cheng, G. ChemCatChem 2014, 6, 2549.
doi: 10.1002/cctc.201402353 |
[56] |
Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. Nano Res. 2015, 8, 3472.
doi: 10.1007/s12274-015-0845-4 |
[57] |
Zhao, P.; Cao, N.; Luo, W.; Cheng, G. J. Mater. Chem. A 2015, 3, 12468.
doi: 10.1039/C5TA02201K |
[58] |
Yang, K.; Yang, K. K.; Zhang, S. L.; Luo, Y.; Yao, Q. L.; Lu, Z. H. J. Alloys Compd. 2018, 732, 363.
doi: 10.1016/j.jallcom.2017.10.241 |
[59] |
Zhang, Z.; Zhang, S.; Yao, Q.; Feng, G.; Zhu, M.; Lu, Z.-H. Inorg. Chem. Front. 2018, 5, 370.
doi: 10.1039/C7QI00555E |
[60] |
Singh, S. K.; Xu, Q. Inorg. Chem. 2010, 49, 6148.
doi: 10.1021/ic1007654 |
[61] |
Singh, S. K.; Lu, Z.-H.; Xu, Q. Eur. J. Inorg. Chem. 2011, 2011, 2232.
doi: 10.1002/ejic.201100083 |
[62] |
Singh, A. K.; Xu, Q. Int. J. Hydrogen Energy 2014, 39, 9128.
doi: 10.1016/j.ijhydene.2014.04.001 |
[63] |
Oliaee, S. N.; Zhang, C.; Hwang, S. Y.; Cheung, H. M.; Peng, Z. J. Phys. Chem. C 2016, 120, 9764.
doi: 10.1021/acs.jpcc.6b00815 |
[64] |
He, L.; Huang, Y.; Wang, A.; Liu, Y.; Liu, X.; Chen, X.; Delgado, J. J.; Wang, X.; Zhang, T. J. Catal. 2013, 298, 1.
doi: 10.1016/j.jcat.2012.10.012 |
[65] |
Jiang, Y.; Kang, Q.; Zhang, J.; Dai, H.-B.; Wang, P. J. Power Sources 2015, 273, 554.
doi: 10.1016/j.jpowsour.2014.09.119 |
[66] |
Jiang, Y. Y.; Dai, H. B.; Zhong, Y. J.; Chen, D. M.; Wang, P. Chem. Eur. J. 2015, 21, 15439.
doi: 10.1002/chem.v21.43 |
[67] |
Wang, H. L.; Yan, J. M.; Wang, Z. L.; O, S. I.; Jiang, Q. J. Mater. Chem. A 2013, 1, 14957.
doi: 10.1039/c3ta13259e |
[68] |
Dai, H.; Qiu, Y.-P.; Dai, H.-B.; Wang, P. ACS Sustain. Chem. Eng. 2018, 6, 9876.
doi: 10.1021/acssuschemeng.8b01098 |
[69] |
Zhong, Y.-J.; Dai, H.-B.; Jiang, Y.-Y.; Chen, D.-M.; Zhu, M.; Sun, L.-X.; Wang, P. J. Power Sources 2015, 300, 294.
doi: 10.1016/j.jpowsour.2015.09.071 |
[70] |
Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W.; Pachfule, P.; Nobuko, Tsumori.; Xu, Q. Adv. Energy Mater. 2018, 8, 1701416.
doi: 10.1002/aenm.v8.1 |
[71] |
Qiao, M. F.; Wang, Y.; Li, L. Rare Metals 2020, 39, 824.
doi: 10.1007/s12598-019-01345-9 |
[72] |
Wang, D. C.; Lei, Y.; Jiao, W.; Liu, Y. F.; Mu, C. H.; Jian, X. Rare Metals 2021, 40, 3.
doi: 10.1007/s12598-020-01622-y |
[73] |
Song, F. Z.; Yang, X.; Xu, Q. Small Methods 2020, 4, 1900707.
doi: 10.1002/smtd.v4.1 |
[74] |
Song, F. Z.; Zhu, Q. L.; Nobuko, T.; Xu, Q. ACS Catal. 2015, 5, 5141.
doi: 10.1021/acscatal.5b01411 |
[75] |
Song, F. Z.; Zhu, Q.-L.; Xu, Q. J. Mater. Chem. A 2015, 3, 23090.
doi: 10.1039/C5TA05664K |
[76] |
Chen, J.; Lu, Z.-H.; Huang, W.; Kang, Z.; Chen, X. J. Alloy. Compd. 2017, 695, 3036.
doi: 10.1016/j.jallcom.2016.11.351 |
[77] |
Du, Y.; Su, J.; Luo, W.; Cheng, G. ACS Appl. Mater. Inter. 2015, 7, 1031.
doi: 10.1021/am5068436 |
[78] |
Du, X.; Du, C.; Cai, P.; Luo, W.; Cheng, G. ChemCatChem 2016, 8, 1410.
doi: 10.1002/cctc.v8.7 |
[79] |
Singh, A.; Xu, Q. ChemCatChem 2013, 2013, 3000.
|
[80] |
Sun, J.-K.; Xu, Q. ChemCatChem 2015, 7, 526.
doi: 10.1002/cctc.v7.3 |
[81] |
Zhang, Z.; Zhang, S.; Yao, Q.; Chen, X.; Lu, Z. H. Inorg. Chem. 2017, 56, 11938.
doi: 10.1021/acs.inorgchem.7b01910 |
[82] |
Zou, H. T.; Zhang, S. L.; Hong, X. L.; Yao, Q. L.; Luo, Y.; Lu, Z. H. J. Alloys Compd. 2020, 835, 155426.
doi: 10.1016/j.jallcom.2020.155426 |
[83] |
Cao, N.; Su, J.; Luo, W.; Cheng, G. Int. J. Hydrogen Energy 2014, 39, 9726.
doi: 10.1016/j.ijhydene.2014.04.075 |
[84] |
Cao, N.; Yang, L.; Dai, H.; Liu, T.; Su, J.; Wu, X.; Luo, W.; Cheng, G. Inorg. Chem. 2014, 53, 10122.
doi: 10.1021/ic5010352 |
[85] |
Wen, L.; Du, X.; Su, J.; Luo, W.; Cai, P.; Cheng, G. Dalton Trans. 2015, 44, 6212.
doi: 10.1039/C5DT00493D |
[86] |
Luo, Y.; Yang, Q.; Nie, W.; Yao, Q.; Zhang, Z.; Lu, Z. H. ACS Appl. Mater. Inter. 2020, 12, 8082.
doi: 10.1021/acsami.9b16981 |
[87] |
Xia, B.; Liu, T.; Luo, W.; Cheng, G. J. Mater. Chem. A 2016, 4, 5616.
doi: 10.1039/C6TA00766J |
[88] |
O, S.-I.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. J. Power Sources 2014, 262, 386.
doi: 10.1016/j.jpowsour.2014.03.059 |
[89] |
Guo, F.; Zou, H.; Yao, Q.; Huang, B.; Lu, Z.-H. Renew. Energy 2020, 155, 1293.
doi: 10.1016/j.renene.2020.04.047 |
[90] |
Singh, S. K.; Xu, Q. Chem. Commun. 2010, 46, 6545.
doi: 10.1039/c0cc01879a |
[91] |
Qiu, Y. P.; Yin, H.; Dai, H.; Gan, L. Y.; Dai, H. B.; Wang, P. Chem. Eur. J. 2018, 24, 4902.
doi: 10.1002/chem.201705923 |
[92] |
He, L.; Huang, Y.; Liu, X. Y.; Li, L.; Wang, A.; Wang, X.; Mou, C.-Y.; Zhang, T. Appl. Catal. B-Environ. 2014, 147, 779.
doi: 10.1016/j.apcatb.2013.10.022 |
[93] |
Hong, X.; Yao, Q.; Huang, M.; Du, H.; Lu, Z.-H. Inorg. Chem. Front. 2019, 6, 2271.
doi: 10.1039/C9QI00848A |
[94] |
Zhao, P.; Cao, N.; Su, J.; Luo, W.; Cheng, G. ACS Sustain. Chem. Eng. 2015, 3, 1086.
doi: 10.1021/acssuschemeng.5b00009 |
[95] |
Singh, S. K.; Iizuka, Y.; Xu, Q. Int. J. Hydrogen Energy 2011, 36, 11794.
doi: 10.1016/j.ijhydene.2011.06.069 |
[96] |
Bhattacharjee, D.; Mandal, K.; Dasgupta, S. J. Power Sources 2015, 287, 96.
doi: 10.1016/j.jpowsour.2015.04.008 |
[97] |
Bhattacharjee, D.; Dasgupta, S. J. Mater. Chem. A 2015, 3, 24371.
doi: 10.1039/C5TA05814G |
[98] |
Song-Il, O.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. Int. J. Hydrogen Energy 2014, 39, 3755.
doi: 10.1016/j.ijhydene.2013.12.135 |
[99] |
Wang, K.; Yao, Q.; Qing, S.; Lu, Z.-H. J. Mater. Chem. A 2019, 7, 9903.
doi: 10.1039/c9ta01066a |
[100] |
Firdous, N.; Janjua, N. K.; Qazi, I.; Sarwar Wattoo, M. H.. Int. J. Hydrogen Energy 2016, 41, 984.
doi: 10.1016/j.ijhydene.2015.10.084 |
[101] |
Du, X.; Cai, P.; Luo, W.; Cheng, G. Int. J. Hydrogen Energy 2017, 42, 6137.
doi: 10.1016/j.ijhydene.2016.12.049 |
[102] |
luo, W.; Xiao, Q.-D.; Tan, S.; Cai, P.; Cheng, G. J. Mater. Chem. A 2016, 4, 14572.
doi: 10.1039/C6TA05917A |
[103] |
Liu, T.; Yu, J.; Bie, H.; Hao, Z. J. Alloy. Compd. 2017, 690, 783.
doi: 10.1016/j.jallcom.2016.08.113 |
[104] |
Wang, J.; Li, W.; Wen, Y.; Gu, L.; Zhang, Y. Adv. Energy Mater. 2015, 5, 1401879.
doi: 10.1002/aenm.201401879 |
[105] |
Yao, Q.; He, M.; Hong, X.; Chen, X.; Feng, G.; Lu, Z.-H. Int. J. Hydrogen Energy 2019, 44, 28430.
doi: 10.1016/j.ijhydene.2019.02.105 |
[106] |
Yao, Q.; He, M.; Hong, X.; Zhang, X.; Lu, Z.-H. Inorg. Chem. Front. 2019, 6, 1546.
doi: 10.1039/C9QI00379G |
[107] |
Yang, K. K.; Yao, Q. L.; Huang, W.; Chen, X. S.; Lu, Z. H. Int. J. Hydrogen Energy 2017, 42, 6840.
doi: 10.1016/j.ijhydene.2016.12.029 |
[108] |
Yao, Q.; Ding, Y.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 3837.
doi: 10.1039/D0QI00766H |
[109] |
Yao, Q.; Lu, Z.-H.; Zhang, R.; Zhang, S.; Chen, X.; Jiang, H.-L. J. Mater. Chem. A 2018, 6, 4386.
doi: 10.1039/C7TA10886A |
[110] |
Yao, Q.; Lu, Z. H.; Huang, W.; Chen, X.; Zhu, J. J. Mater. Chem. A 2016, 4, 8579.
doi: 10.1039/C6TA02004F |
[111] |
Singh, S. K.; Singh, A. K.; Aranishi, K.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 19638.
doi: 10.1021/ja208475y |
[112] |
Gao, W.; Li, C.; Chen, H.; Wu, M.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2014, 16, 1560.
doi: 10.1039/c3gc41939h |
[113] |
Wu, D.; Wen, M.; Gu, C.; Wu, Q. ACS Appl. Mater. Inter. 2017, 9, 16103.
doi: 10.1021/acsami.7b00652 |
[114] |
Men, Y.; Du, X.; Cheng, G.; Luo, W. Int. J. Hydrogen Energy 2017, 42, 27165.
doi: 10.1016/j.ijhydene.2017.08.214 |
[115] |
Zou, H.; Yao, Q.; Huang, M.; Zhu, M.; Zhang, F.; Lu, Z.-H. Sustain. Energy Fuels 2019, 3, 3071.
doi: 10.1039/C9SE00547A |
[116] |
Chen, J.; Zou, H.; Yao, Q.; Luo, M.; Li, X.; Lu, Z.-H. Appl. Surf. Sci. 2020, 501, 144247.
doi: 10.1016/j.apsusc.2019.144247 |
[117] |
Yao, Q.; Lu, Z. H.; Zhang, Z.; Chen, X.; Lan, Y. Sci. Rep. 2014, 4, 7597.
doi: 10.1038/srep07597 |
[118] |
Manukyan, K. V.; Cross, A.; Rouvimov, S.; Miller, J.; Mukasyan, A. S.; Wolf, E. E. Appl. Catal. A-Gen. 2014, 476, 47.
doi: 10.1016/j.apcata.2014.02.012 |
[119] |
Wang, J.; Li, Y.; Zhang, Y. Adv. Funct. Mater. 2014, 24, 7073.
|
[120] |
Wang, H.-L.; Yan, J.-M.; Li, S.-J.; Zhang, X.-W.; Jiang, Q. J. Mater. Chem. A 2015, 3, 121.
doi: 10.1039/C4TA05360E |
[121] |
Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. ACS Catal. 2015, 5, 5505.
doi: 10.1021/acscatal.5b00869 |
[122] |
Kang, W.; Guo, H.; Varma, A. Appl. Catal. B-Environ. 2019, 249, 54.
doi: 10.1016/j.apcatb.2019.02.066 |
[123] |
Ding, L.; Shu, Y.; Wang, A.; Zheng, M.; Li, L.; Wang, X.; Zhang, T. Appl. Catal. A-Gen. 2010, 385, 232.
doi: 10.1016/j.apcata.2010.07.020 |
[124] |
Wu, D.; Wen, M.; Lin, X.; Wu, Q.; Gu, C.; Chen, H. J. Mater. Chem. A 2016, 4, 6595.
doi: 10.1039/C6TA01092J |
[125] |
Cheng, H.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. Top. Catal. 2009, 52, 1535.
doi: 10.1007/s11244-009-9294-1 |
[126] |
Zhang, J.; Kang, Q.; Yang, Z.; Dai, H.-B.; Zhuang, D.; Wang, P. J. Mater. Chem. A 2013, 1, 11623.
doi: 10.1039/c3ta12528a |
[127] |
Qiu, Y.-P.; Cao, G.-X.; Wen, H.; Shi, Q.; Dai, H.; Wang, P. Int. J. Hydrogen Energy 2019, 44, 15110.
doi: 10.1016/j.ijhydene.2019.04.062 |
[128] |
Liu, Y.; Zhang, H.; Ma, C.; Sun, N. Catalysts 2019, 9, 596.
doi: 10.3390/catal9070596 |
[129] |
Zhao, B.; Song, J.; Ran, R.; Shao, Z. Int. J. Hydrogen Energy 2012, 37, 1133.
doi: 10.1016/j.ijhydene.2011.02.076 |
[130] |
Song, J.; Ran, R.; Shao, Z. Int. J. Hydrogen Energy 2010, 35, 7919.
doi: 10.1016/j.ijhydene.2010.05.094 |
[131] |
Oosawa, Y. J. Chem. Soc. Faraday Trans 1984, 80, 1507.
|
[132] |
Abe, T.; Taira, N.; Tanno, Y.; Kikuchi, Y.; Nagai, K. Chem. Commun. 2014, 50, 1950.
doi: 10.1039/c3cc46701e |
[133] |
Jana, M. K.; Gupta, U.; Rao, C. N. R. Dalton Trans. 2016, 45, 15137.
doi: 10.1039/C6DT02505F |
[134] |
Zhang, P.-X.; Wang, Y.-G.; Huang, Y.-Q.; Zhang, T.; Wu, G.-S.; Li, J. Catal. Today 2011, 165, 80.
doi: 10.1016/j.cattod.2011.01.012 |
[135] |
Block, J.; Schulz-Ekloff, G. J. Catal. 1973, 30, 327.
doi: 10.1016/0021-9517(73)90079-1 |
[136] |
He, L.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Zhang, T. Chem. Ind. Eng. Prog. 2014, 33, 2956. (in Chinese)
|
(贺雷, 黄延强, 王爱琴, 王晓东, 张涛, 化工进展, 2014, 33, 2956.)
|
|
[137] |
Wood, B. J.; Wise, H. J. Catal. 1975, 39, 471.
doi: 10.1016/0021-9517(75)90315-2 |
[138] |
Falconer, J. L.; Wise, H. J. Catal. 1976, 43, 220.
doi: 10.1016/0021-9517(76)90308-0 |
[139] |
Prasad, J.; Gland, J. L. Langmuir 1991, 7, 722.
doi: 10.1021/la00052a021 |
[140] |
Alberas, D. J.; Kiss, J.; Liu, Z. M.; White, J. M. Surf. Sci. 1992, 278, 51.
doi: 10.1016/0039-6028(92)90583-R |
[141] |
Ranney, J. T.; Franz, A. J.; Gland, J. L. Langmuir 1997, 13, 2731.
doi: 10.1021/la962019e |
[142] |
Zhang, D. X.; Yin, H.; Zhong, H. F.; Gan, L. Y.; Wang, P. Int. J. Hydrogen Energy 2020, 45, 16114.
doi: 10.1016/j.ijhydene.2020.04.054 |
[143] |
Dai, H. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2019. (in Chinese)
|
(戴豪, 博士论文, 华南理工大学, 广州, 2019.)
|
|
[144] |
Maurel, R.; Menezo, J. C. J. Catal. 1978, 51, 293.
doi: 10.1016/0021-9517(78)90304-4 |
[145] |
Lu, X. Y.; Francis, S.; Motta, D.; Dimitratos, N.; Roldan, A. Phys. Chem. Chem. Phys. 2020, 22, 3883.
doi: 10.1039/C9CP06525C |
[146] |
Deng, Z.; Lu, X.; Wen, Z.; Wei, S.; Liu, Y.; Fu, D.; Zhao, L.; Guo, W. Phys. Chem. Chem. Phys. 2013, 15, 16172.
doi: 10.1039/c3cp51948a |
[147] |
He, Y. B.; Jia, J. F.; Wu, H. S. Appl. Surf. Sci. 2015, 327, 462.
doi: 10.1016/j.apsusc.2014.12.007 |
[148] |
McKay, H. L.; Jenkins, S. J.; Wales, D. J. J. Phys. Chem. C 2011, 115, 17812.
doi: 10.1021/jp202155w |
[149] |
Agusta, M. K.; David, M.; Nakanishi, H.; Kasai, H. Surf. Sci. 2010, 604, 245.
doi: 10.1016/j.susc.2009.11.012 |
[150] |
Yin, H.; Qiu, Y. P.; Dai, H.; Gan, L. Y.; Dai, H. B.; Wang, P. J. Phys. Chem. C 2018, 122, 5443.
doi: 10.1021/acs.jpcc.7b11293 |
[151] |
Daff, T. D.; de Leeuw, N. H. J. Mater. Chem. 2012, 22, 23210.
doi: 10.1039/c2jm34646j |
[152] |
He, Y. B. Ph.D. Dissertation, Shanxi Normal University, Linfen, 2015. (in Chinese)
|
(贺艳斌, 博士论文, 山西师范大学, 临汾, 2015.)
|
|
[153] |
Singh, S. K.; Xu, Q. Catal. Sci. Technol. 2013, 3, 1889.
doi: 10.1039/c3cy00101f |
[154] |
Zhang, Z. J.; Lu, Z. H.; Chen, X. S. ACS Sustain. Chem. Eng. 2015, 3, 1255.
doi: 10.1021/acssuschemeng.5b00250 |
[155] |
Chen, J. M.; Lu, Z. H.; Yao, Q. L. J. Mater. Chem. A 2018, 6, 20746.
doi: 10.1039/C8TA08050J |
[156] |
Yao, L. H.; Li, X. G.; Peng, W. F.; Yao, Q. L.; Xia, J. H.; Lu, Z. H. Inorg. Chem. Front. 2021, 8, 1056.
doi: 10.1039/D0QI01244K |
[157] |
Yao, Q. L.; Yang, K. K.; Nie, W. D.; Li, Y. X.; Lu, Z. H. Renewable Energy 2020, 147, 2024.
doi: 10.1016/j.renene.2019.09.144 |
[158] |
He, L.; Liang, B.; Huang, Y.; Zhang, T. Natl. Sci. Rev. 2017, 5, 356.
doi: 10.1093/nsr/nwx123 |
[159] |
Li, L. C.; Lan, Y. J. Ind. Catal. 1994, 1, 3. (in Chinese)
|
(李令成, 蓝蕴基, 工业催化, 1994, 1, 3.)
|
|
[160] |
Zou, H. T.; Guo, F.; Luo, M. H.; Yao, Q. L.; Lu, Z. H. Int. J. Hydrogen Energy 2020, 45, 11641.
doi: 10.1016/j.ijhydene.2020.02.074 |
[161] |
Li, S. J.; Wang, H. L.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Adv. Energy. Mater 2018, 8, 1800625.
doi: 10.1002/aenm.v8.21 |
[162] |
Zhang, S.; Yao, Q.; Lu, Z. Chem. Ind. Eng. Prog. 2017, 29, 426. (in Chinese)
|
(张世亮, 姚淇露, 卢章辉, 化学进展, 2017, 29, 426.)
|
|
[163] |
Wang, W.; Hong, X.; Yao, Q.; Lu, Z.-H. J. Mater. Chem. A 2020, 8, 13694.
doi: 10.1039/D0TA05322H |
[164] |
Guo, J. Q.; Du, Y. P.; Zhang, H. B. Acta Chim. Sinica 2020, 78, 625. (in Chinese)
doi: 10.6023/A20030053 |
(郭金秋, 杜亚平, 张洪波, 化学学报, 2020, 78, 625.)
doi: 10.6023/A20030053 |
|
[165] |
Nie, W. D.; Yang, Q. F.; Lu, Z. H. J. Jiangxi Normal Univ. (Natural Sci.), 2019, 43, 416. (in Chinese)
|
(聂文丹, 杨齐凤, 卢章辉, 江西师范大学学报(自然科学版), 2019, 43, 416.)
|
|
[166] |
Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J. Acta Chim. Sinica 2016, 74, 789. (in Chinese)
doi: 10.6023/A16070360 |
(黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰, 化学学报, 2016, 74, 789.)
doi: 10.6023/A16070360 |
|
[167] |
Sun, J.; Liang, B. L.; Huang, Y. Q.; Wang, X. D. Catal. Today 2016, 274, 123.
doi: 10.1016/j.cattod.2016.01.031 |
[168] |
Zhang, J. W.; Li, P.; Zhang, X. N.; Ma, X. J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese)
doi: 10.6023/A20050153 |
(张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.)
doi: 10.6023/A20050153 |
|
[169] |
Fu, Q.; Yang, P.; Wang, J.; Wang, H.; Yang, L.; Zhao, X. J. Mater. Chem. A 2018, 6, 11370.
doi: 10.1039/C8TA03464H |
[170] |
Zhao, M.; Xu, L.; Vara, M.; Elnabawy, A. O.; Gilroy, K. D.; Hood, Z. D.; Zhou, S.; Figueroa-Cosme, L.; Chi, M.; Mavrikakis, M.; Xia, Y. ACS Catal. 2018, 8, 6948.
doi: 10.1021/acscatal.8b00910 |
[171] |
Zhang, Z.; Luo, Y.; Liu, S.; Yao, Q.; Qing, S.; Lu, Z. H. J. Mater. Chem. A 2019, 7, 21438.
doi: 10.1039/C9TA06987A |
[172] |
Wang, W.; Lu, Z. H.; Luo, Y.; Zou, A.; Yao, Q. L.; Chen, X. S. ChemCatChem 2018, 10, 1620.
doi: 10.1002/cctc.v10.7 |
[173] |
Nie, W. D.; Luo, Y.; Yang, Q. F.; Feng, G.; Yao, Q. L.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 709.
doi: 10.1039/C9QI01375J |
[174] |
Yao, Q. L.; Lu, Z. H.; Wang, Y.; Chen, X.; Feng, G. J. Phys. Chem. C 2015, 119, 14167.
doi: 10.1021/acs.jpcc.5b02403 |
[175] |
Chen, J. M.; Lu, Z. H.; Wang, Y.; Chen, X.; Zhang, L. Int. J. Hydrogen Energy 2015, 40, 4777.
doi: 10.1016/j.ijhydene.2015.02.054 |
[176] |
Yang, Y. W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi, W. M.; Chen, X. RSC Adv. 2014, 4, 13749.
doi: 10.1039/C3RA47023G |
[177] |
Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X.; Liu, X. Int. J. Hydrogen Energy 2015, 40, 2207.
doi: 10.1016/j.ijhydene.2014.12.047 |
[178] |
Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang, W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. Int. J. Hydrogen Energy 2013, 38, 5330.
doi: 10.1016/j.ijhydene.2013.02.076 |
[179] |
Lu, Z. H.; Li, J. P.; Feng, G.; Yao, Q. L.; Zhang, F.; Zhou, R. Y.; Tao, D. J.; Chen, X.; Yu, Z. Q. Int. J. Hydrogen Energy 2014, 39, 13389.
doi: 10.1016/j.ijhydene.2014.04.086 |
[180] |
Yao, Q. L.; Lu, Z. H.; Yang, Y. Nano Res. 2018, 11, 4412.
doi: 10.1007/s12274-018-2031-y |
[181] |
Yao, Q.; Yang, K.; Hong, X.; Chen, X.; Lu, Z.-H. Catal. Sci. Technol. 2018, 8, 870.
doi: 10.1039/C7CY02365K |
[182] |
Dong, Y. L.; Zhao, J. Q. Petrochem. Technol. 2018, 47, 883. (in Chinese)
|
(董永利, 赵继全, 石油化工, 2018, 47, 883.)
|
[1] | Yaning Li, Xiaoyan Wang, Yong Tang. The Regulation of Stereoselectivity in Radical Polymerization★ [J]. Acta Chimica Sinica, 2024, 82(2): 213-225. |
[2] | Guoqing Cui, Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu. Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols [J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100. |
[3] | Xinpu Fu, Xiuling Wang, Weiwei Wang, Rui Si, Chunjiang Jia. Fabrication and Mechanism Study of Clustered Au/CeO2 Catalyst for the CO Oxidation Reaction★ [J]. Acta Chimica Sinica, 2023, 81(8): 874-883. |
[4] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[5] | Tiancheng Zhao, Hongyu Jiang, Kun Zhang, Yifan Xu, Xinyue Kang, Jiancheng Xu, Xufeng Zhou, Peining Chen, Huisheng Peng. Continuous Preparation of High-performing Carbon Nanotube Fibers Based on Cycloalkane/ethanol Mixing Carbon Source [J]. Acta Chimica Sinica, 2023, 81(6): 565-571. |
[6] | Zihao Wang, Min Chen, Changle Chen. Catalytic Synthesis of Polyolefin Elastomer Using Unsymmetrical α-Diimine Nickel Catalyst★ [J]. Acta Chimica Sinica, 2023, 81(6): 559-564. |
[7] | Liu Lujie, Zhang Jian, Wang Liang, Xiao Fengshou. Heterogeneous Catalysts for Selective Hydrogenolysis of Biomass-derived Polyols★ [J]. Acta Chimica Sinica, 2023, 81(5): 533-547. |
[8] | Bin Xu, Xiuzhi Wei, Jiangmin Sun, Jianguo Liu, Longlong Ma. In-situ Synthesis of Nitrogen-doped Graphene Layer Encapsulated Palladium Nanoparticles for Highly Selective Hydrogenation of Vanillin [J]. Acta Chimica Sinica, 2023, 81(3): 239-245. |
[9] | Jian Liu, Jinhua Ou, Zeping Li, jingyi Jiang, Rongtao Liang, Wenjie Zhang, kaijian Liu, Yu Han. Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework [J]. Acta Chimica Sinica, 2023, 81(12): 1701-1707. |
[10] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[11] | Guan-Wen Yang, Guang-Peng Wu. Modular Bifunctional Organoboron-ammonium/phosphonium Catalysts: Design and Catalytic Performance★ [J]. Acta Chimica Sinica, 2023, 81(11): 1551-1565. |
[12] | Qingxin Wang, Yong Cui, Yunqi Li, Shanfu Lu, Yan Xiang. Effect of Controllable Pyrolysis of Ionomers in Fe-N-C Cathode Catalytic Layer on Cell Performance and Stability of Membrane Electrode Assembly★ [J]. Acta Chimica Sinica, 2023, 81(10): 1350-1356. |
[13] | Bo Li, Haiyan Zhou, Haiyan Ma, Jiling Huang. Synthesis of Ethylene-Bridged Bis(indenyl) Zirconium, Hafnium Complexes and Their Catalytic Behavior on Selective Propylene Oligomerization: the Effect of 3-Substituent on Indenyl Ring [J]. Acta Chimica Sinica, 2023, 81(10): 1280-1294. |
[14] | Zhiping Chen, Yongle Meng, Jing Lu, Wenwu Zhou, Zhiyuan Yang, Anning Zhou. Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins [J]. Acta Chimica Sinica, 2023, 81(1): 14-19. |
[15] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||