Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (12): 1438-1460.DOI: 10.6023/A21070319 Previous Articles     Next Articles

Review

纳米材料用于放疗防护的研究进展

廖友a,b, 王冬梅a,b, 谷战军a,b,*()   

  1. a 中国科学院高能物理研究所 纳米生物效应与安全性重点实验室 北京 100049
    b 中国科学院大学 北京 100049
  • 投稿日期:2021-07-09 发布日期:2021-09-06
  • 通讯作者: 谷战军
  • 作者简介:

    廖友, 2019年6月本科毕业于四川师范大学化学与材料科学学院, 获得理学学士学位; 2019年9月起在中国科学院高能物理研究所中国科学院纳米生物效应与安全性重点实验室攻读博士学位, 主要研究方向为纳米材料的合成和生物医学应用.

    王冬梅, 2019年6月本科毕业于四川师范大学化学与材料科学学院, 获得理学学士学位; 2019年9月起在中国科学院高能物理研究所中国科学院纳米生物效应与安全性重点实验室攻读博士学位, 主要研究方向为纳米材料的合成和生物医学应用.

    谷战军, 华中科技大学学士(2002年), 中国科学院化学研究所博士(2007年), 美国佐治亚大学博士后. 2009年10月进入中国科学院高能物理研究所中国科学院纳米生物效应与安全性重点实验室工作任副研究员, 2016年12月晋升为研究员. 获得国家优秀青年基金(2018年), 国家自然科学二等奖(2018年, 排名第三), 中国科学院杰出科技成就奖集体奖(2019年, 主要贡献者). 主要研究方向为新型纳米材料的可控合成及其生物效应研究.

    † These two authors contributed equally to this work.
  • 基金资助:
    国家重点基础研究发展计划(2020YFA0710702); 中国科学院战略性先导科技专项(B类)(XDB36000000); 国家自然科学基金(51822207); 国家自然科学基金(51772292); 中科院-伊朗科技副总统办公室合作研究项目(113111KYSB20190067)

Research Progress of Nanomaterials for Radioprotection

You Liaoa,b, Dongmei Wanga,b, Zhanjun Gua,b()   

  1. a CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-07-09 Published:2021-09-06
  • Contact: Zhanjun Gu
  • Supported by:
    National Basic Research Program of China(2020YFA0710702); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); National Natural Science Foundation of China(51822207); National Natural Science Foundation of China(51772292); CAS-Iranian Vice Presidency for Science and Technology Joint Research Project(113111KYSB20190067)

Radiotherapy is a traditional treatment method that utilizes high-energy radiation to inhibit cancer cells and has been widely used in the treatment of malignant tumors. However, high-energy radiation can not only cause damage to tumors, but also cause side effects to normal tissues. Although some small-molecule radioprotection agents have been used in clinics, their short blood circulation time and faster metabolism greatly reduce the protective effects. In the last twenty years, with the rapid development of nanotechnology in biomedicine, radioprotection nano-agents have provided new candidates for improving the protective effect. Rational design of radioprotection nano-agents is demanded to solve the drawbacks of existing small-molecule radioprotection agents. In view of the many advantages of nanomaterials for radioprotection, this review summarized the common design strategies of nanometer radioprotection materials, and analyzed the pathogenic mechanism of common radiation-induced diseases as well as the treatment of various radiation-induced diseases by radioprotection nano-agents. In addition, this review also discussed the challenges and future prospects of nanomaterial-mediated radioprotection during radiotherapy.

Key words: radiotherapy, radiation injury, nanomaterial, radioprotection