Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (12): 1415-1424.DOI: 10.6023/A21080380 Previous Articles Next Articles
Review
董雪a, 曹鸿a, 徐雷a,b, 王志鹏a,*(), 陈靖a, 徐超a,*()
投稿日期:
2021-08-13
发布日期:
2021-10-08
通讯作者:
王志鹏, 徐超
作者简介:
董雪, 男, 博士研究生. 2018年7月毕业于西南科技大学国防科技学院, 获学士学位. 目前就读于清华大学核能与新能源技术研究院, 主要从事核废物处理中超铀元素的化学行为和分离机制研究. |
王志鹏, 男, 助理研究员. 2019年于四川大学获放射化学专业博士学位. 2019~2021年在清华大学核能与新能源技术研究院开展博士后研究. 2021年8月起任职助理研究员. 主要从事于核燃料循环相关的分离化学、氧化还原化学和配位化学研究. |
徐超, 男, 清华大学核能与新能源技术研究院长聘副教授. 2009年于北京大学获理学博士学位, 同年进入清华大学核能与新能源技术研究院工作至今. 中国化学会核化学与放射化学分会理事会副秘书长, 中国核学会锕系物理与化学分会理事. 主要研究领域包括放射性废物高效分离和处理技术, 锕系及镧系离子配位化学等. |
基金资助:
Xue Donga, Hong Caoa, Lei Xua,b, Zhipeng Wanga(), Jing Chena, Chao Xua()
Received:
2021-08-13
Published:
2021-10-08
Contact:
Zhipeng Wang, Chao Xu
Supported by:
Share
Xue Dong, Hong Cao, Lei Xu, Zhipeng Wang, Jing Chen, Chao Xu. Advances in Environmental Coordination Chemistry of Np and Pu with Inorganic Anions in Aqueous Solution[J]. Acta Chimica Sinica, 2021, 79(12): 1415-1424.
log β01 | log β02 | log β03 | log β04 | Ref. | |
---|---|---|---|---|---|
Np(IV) | 0.55±0.20 | 0.35±0.30 | –8.30±1.10 | [ | |
0.5±0.2 | 0.3±0.3 | –2.8±1.0 | –8.3±1.1 | [ | |
Pu(IV) | 0.60±0.20 | 0.60±0.30 | –2.30±0.40 | –8.50±0.50 | [ |
0.0±0.2 | –1.2±0.6 | –3.1±0.9 | [ |
log β01 | log β02 | log β03 | log β04 | Ref. | |
---|---|---|---|---|---|
Np(IV) | 0.55±0.20 | 0.35±0.30 | –8.30±1.10 | [ | |
0.5±0.2 | 0.3±0.3 | –2.8±1.0 | –8.3±1.1 | [ | |
Pu(IV) | 0.60±0.20 | 0.60±0.30 | –2.30±0.40 | –8.50±0.50 | [ |
0.0±0.2 | –1.2±0.6 | –3.1±0.9 | [ |
Species | I/(mol•L–1) | log β | Ref. | |
---|---|---|---|---|
Np(IV) | [Np(CO3)2(OH)2]2– | 0 | 46.4±0.5 | [ |
[NpCO3(OH)4]2– | 0 | 50.5±0.5 | [ | |
[Np(CO3)2(OH)4]4– | 0 | 47.4±0.5 | [ | |
Pu(IV) | [Pu(CO3)2(OH)4]4– | 0.1 | 49.7±0.5 | [ |
[Pu(CO3)2(OH)2]2– | 0 | 44.8 | [ | |
0.1 | 44.2±0.6 | [ |
Species | I/(mol•L–1) | log β | Ref. | |
---|---|---|---|---|
Np(IV) | [Np(CO3)2(OH)2]2– | 0 | 46.4±0.5 | [ |
[NpCO3(OH)4]2– | 0 | 50.5±0.5 | [ | |
[Np(CO3)2(OH)4]4– | 0 | 47.4±0.5 | [ | |
Pu(IV) | [Pu(CO3)2(OH)4]4– | 0.1 | 49.7±0.5 | [ |
[Pu(CO3)2(OH)2]2– | 0 | 44.8 | [ | |
0.1 | 44.2±0.6 | [ |
log *βn | ∆Gn0/(kJ•mol–1) | ∆Hnb/(kJ•mol–1) | ∆Snb/(J•K–1•mol–1) | |
---|---|---|---|---|
NpO2(OH) | –9.01±0.07 | 51.3±0.5 | 31.6±0.6 | –66±3 |
[NpO2(OH)2]– | –18.95±0.07 | 28.6±0.3 | 39.7±0.5 | 47.5±0.5 |
log *βn | ∆Gn0/(kJ•mol–1) | ∆Hnb/(kJ•mol–1) | ∆Snb/(J•K–1•mol–1) | |
---|---|---|---|---|
NpO2(OH) | –9.01±0.07 | 51.3±0.5 | 31.6±0.6 | –66±3 |
[NpO2(OH)2]– | –18.95±0.07 | 28.6±0.3 | 39.7±0.5 | 47.5±0.5 |
Method | log β01 | log β02 | log β03 | Ref. | |
---|---|---|---|---|---|
Np(V) | 光谱法 | 4.92±0.06 | 6.53±0.06 | 5.50±0.15 | [ |
CE-ICP-MS | 4.88±0.12 | 6.27±0.11 | 5.64±0.15 | [ | |
Pu(V) | 光谱法 | 4.95±0.10 | 5.03±0.95 | [ | |
CE-ICP-MS | 4.95±0.01 | 6.34±0.10 | 5.61±0.16 | [ |
Method | log β01 | log β02 | log β03 | Ref. | |
---|---|---|---|---|---|
Np(V) | 光谱法 | 4.92±0.06 | 6.53±0.06 | 5.50±0.15 | [ |
CE-ICP-MS | 4.88±0.12 | 6.27±0.11 | 5.64±0.15 | [ | |
Pu(V) | 光谱法 | 4.95±0.10 | 5.03±0.95 | [ | |
CE-ICP-MS | 4.95±0.01 | 6.34±0.10 | 5.61±0.16 | [ |
log β | ∆H/(kJ•mol–1) | ∆S/(J•k–1•mol–1) | Ref. | |
---|---|---|---|---|
NpO2F | 1.42±0.10 | 20.8 | 96.9 | [ |
1.26±0.15 | 7.3±3.6 | 48±11 | [ | |
1.25±0.05 | 8.1±1.0 | 51±5 | [ | |
[NpO2F2]– | 1.79±0.20 | 17.2±6.0 | 90±18 | [ |
1.77±0.09 | 14.2±3.1 | 82±12 | [ |
log β | ∆H/(kJ•mol–1) | ∆S/(J•k–1•mol–1) | Ref. | |
---|---|---|---|---|
NpO2F | 1.42±0.10 | 20.8 | 96.9 | [ |
1.26±0.15 | 7.3±3.6 | 48±11 | [ | |
1.25±0.05 | 8.1±1.0 | 51±5 | [ | |
[NpO2F2]– | 1.79±0.20 | 17.2±6.0 | 90±18 | [ |
1.77±0.09 | 14.2±3.1 | 82±12 | [ |
[1] |
Altmaier, M.; Gaona, X.; Fanghaenel, T. Chem. Rev. 2013, 113, 901.
doi: 10.1021/cr300379w pmid: 23369090 |
[2] |
Magill, J.; Berthou, V.; Haas, D.; Galy, J.; Schenkel, R. Nucl. Energy 2003, 42, 263.
|
[3] |
Maher, K.; Bargar, J. R.; Brown, G. E. Inorg. Chem. 2013, 52, 3510.
doi: 10.1021/ic301686d pmid: 23137032 |
[4] |
Wang, Z. P.; Pu, N.; Tian, Y.; Xu, C.; Wang, F.; Liu, Y.; Zhang, L. R.; Chen, J.; Ding, S. D. Inorg. Chem. 2019, 58, 5457.
doi: 10.1021/acs.inorgchem.8b01635 |
[5] |
Neck, V.; Altmaier, M.; Fanghänelab, T. C. R. Chim. 2007, 10, 959.
doi: 10.1016/j.crci.2007.02.011 |
[6] |
Ikeda-Ohno, A.; Hennig, C.; Rossberg, A.; Funke, H.; Scheinost, A. C.; Bernhard, G.; Yaita, T. Inorg. Chem. 2008, 47, 8294.
doi: 10.1021/ic8009095 pmid: 18698766 |
[7] |
Knope, K. E.; Soderholm, L. Chem. Rev. 2013, 113, 944.
doi: 10.1021/cr300212f |
[8] |
Altmaier, M.; Vercouter, T.; Poinssot, C.; Geckeis, H. Radionuclide Behaviour in the Natural Environment. Science, Implications and Lessons for the Nuclear Industry, Woodhead Publishing, Cambridge, 2012.
|
[9] |
Shilov, V. P.; Gogolev, A. V.; Fedoseev, A. M.; Ershov, B. G. Radiochemistry 2012, 54, 22.
|
[10] |
Choppin, G. R. Radiochim. Acta 1983, 32, 43.
doi: 10.1524/ract.1983.32.13.43 |
[11] |
Mefod'Eva, M. P.; Krot, N. N.; Afanas'Eva, T. V.; Gel'Man, A. D. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1974, 23, 2285.
doi: 10.1007/BF00921308 |
[12] |
Cho, H. R.; Youn, Y. S.; Jung, E. C.; Cha, W. Dalton Trans. 2016, 45, 19449.
doi: 10.1039/C6DT03992H |
[13] |
Thomas, V.; Vitorge, P.; Amekraz, B.; Giffaut, E.; Hubert, S.; Moulin, C. Inorg. Chem. 2005, 44, 5833.
doi: 10.1021/ic050214n |
[14] |
Lemire, R. J.; Fuger, J.; Nitsche, H.; Potter, P. E.; Rand, M. H.; Rydberg, J.; Spahiu, K.; Sullivan, J. C.; Ullman, W. J.; Vitorge, P.; Wanner, H. Chemical Thermodynamics of Neptunium and Plutonium, Elsevier, North Holland, Amsterdam, 2001.
|
[15] |
Fujiwara, K.; Kohara, Y. Radiochim. Acta 2008, 96, 613.
doi: 10.1524/ract.2008.1544 |
[16] |
Neck, V.; Kim, J. I.; Seidelc, B. S.; Marquardt, C. M.; Dardenne, K.; Jensen, M. P.; Hauser, W. Radiochim. Acta 2001, 89, 439.
doi: 10.1524/ract.2001.89.7.439 |
[17] |
Guillaumont, R.; Mompean, F. J. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, The Netherlands, 2003.
|
[18] |
Yun, J. I.; Cho, H. R.; Neck, V.; Altmaier, M.; Seibert, A.; Marquardt, C. M.; Walther, C.; Fanghänel, T. Radiochim. Acta 2007, 95, 89.
doi: 10.1524/ract.2007.95.2.89 |
[19] |
Walther, C.; Cho, H. R.; Marquardt, C. M.; Neck, V.; Seibert, A.; Yun, J. I.; Fanghänel, T. Radiochim. Acta 2007, 95, 7.
doi: 10.1524/ract.2007.95.1.7 |
[20] |
Silver, G. L. J. Radioanal. Nucl. Chem. 2011, 288, 89.
doi: 10.1007/s10967-010-0953-2 |
[21] |
Silver, G. L. J. Radioanal. Nucl. Chem. 2012, 291, 915.
doi: 10.1007/s10967-011-1401-7 |
[22] |
Kitamura, A.; Kohara, Y. Radiochim. Acta 2004, 92, 583.
doi: 10.1524/ract.92.9.583.55002 |
[23] |
Kitamura, A.; Kohara, Y. J. Nucl. Sci. Technol. 2002, 39, 294.
doi: 10.1080/00223131.2002.10875466 |
[24] |
Yamaguchi, T.; Sakamoto, Y.; Ohnuki, T. Radiochim. Acta 1994, 66, 9.
|
[25] |
Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. The Chemistry of the Actinide and Transactinide Elements, Springer, Dordrecht, 2006.
|
[26] |
Xia, Y. X.; Friese, J. I.; Moore, D. A.; Bachelor, P. P.; Rao, L. F. J. Radioanal. Nucl. Chem. 2007, 274, 79.
doi: 10.1007/s10967-006-6907-z |
[27] |
Danesi, P. R.; Chiarizia, R.; Scibona, G.; D'Alessandro, G. J. Inorg. Nucl. Chem. 1971, 33, 3503.
doi: 10.1016/0022-1902(71)80672-3 |
[28] |
Veirs, D. K.; Smith, C. A.; Berg, J. M.; Zwick, B. D.; Marsh, S. F.; Allen, P.; Conradson, S. D. J. Alloys Compd. 1994, 213, 328.
|
[29] |
Berg, J. M.; Veirs, D. K.; Vaughn, R. B.; Cisneros, M. R.; Smith, C. A. Appl. Spectrosc. 2000, 54, 812.
doi: 10.1366/0003702001950436 |
[30] |
Allen, P. G.; Veirs, D. K.; Conradson, S. D.; Smith, C. A.; Marsh, S. F. Inorg. Chem. 1996, 35, 2841.
doi: 10.1021/ic9511231 |
[31] |
Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M. J. Nucl. Mater. 2000, 257, 108.
doi: 10.1016/S0022-3115(98)00443-7 |
[32] |
Brandel, V.; Dacheux, N. J. Solid State Chem. 2004, 177, 4743.
doi: 10.1016/j.jssc.2004.08.009 |
[33] |
Topin, S.; Aupiais, J. J. Environ. Radioact. 2016, 153, 237.
doi: 10.1016/j.jenvrad.2015.12.016 |
[34] |
Topin, S.; Aupiais, J.; Moisy, P. Electrophoresis 2009, 30, 1747.
doi: 10.1002/elps.v30:10 |
[35] |
Rao, L. F.; Srinivasan, T. G.; Garnov, A. Y.; Zanonato, P. L.; Bernardo, P. D. Geochim. Cosmochim. Acta 2004, 68, 4821.
doi: 10.1016/j.gca.2004.06.007 |
[36] |
Bennett, D. A.; Hoffman, D.; Nitsche, H.; Russo, R. E.; Torres, R. A.; Baisden, P. A.; Andrews, J. E.; Palmer, C. E. A.; Silva, R. J. Radiochim. Acta 1992, 56, 15.
doi: 10.1524/ract.1992.56.1.15 |
[37] |
Oliver, J. H. Radiochim. Acta 1983, 33, 29.
doi: 10.1524/ract.1983.33.1.29 |
[38] |
Xia, Y.; Friese, J. I.; Moore, D. A.; Rao, L. F. J. Radioanal. Nucl. Chem. 2006, 268, 445.
doi: 10.1007/s10967-006-0189-3 |
[39] |
Inoue, Y.; Tochiyama, O. Bull. Chem. Soc. Jpn. 2006, 58, 2228.
doi: 10.1246/bcsj.58.2228 |
[40] |
Rao, L. F.; Tian, G. X.; Xia, Y.; Friese, J. I. J. Therm. Anal. Calorim. 2009, 95, 409.
doi: 10.1007/s10973-008-9247-0 |
[41] |
Topin, S.; Aupiais, J.; Baglan, N.; Vercouter, T.; Vitorge, P.; Moisy, P. Anal. Chem. 2009, 81, 5354.
doi: 10.1021/ac900275d |
[42] |
Gainar, I.; Sykes, K. W. J. Chem. Soc. 1964, 4452.
|
[43] |
Rao, P. R. V.; Gudi, N. M.; Bagawde, S. V.; Patil, S. K. J. Inorg. Nucl. Chem. 1979, 41, 235.
doi: 10.1016/0022-1902(79)80520-5 |
[44] |
Topin, S.; Aupiais, J.; Baglan, N. Radiochim. Acta 2010, 98, 71.
|
[45] |
Maiwald, M. M.; Fellhauer, D.; Skerencak-Frech, A.; Panak, P. J. Appl. Geochem. 2019, 104, 10.
doi: 10.1016/j.apgeochem.2019.03.004 |
[46] |
Tian, G. X.; Rao, L. F.; Xia, Y.; Friese, J. I. J. Therm. Anal. Calorim. 2009, 95, 415.
doi: 10.1007/s10973-008-9248-z |
[47] |
Gaona, X.; Tits, J.; Dardenne, K.; Liu, X.; Rothe, J.; Denecke, M. A.; Wieland, E.; Altmaier, M. Radiochim. Acta 2012, 100, 759.
doi: 10.1524/ract.2012.1948 |
[48] |
Gaona, X.; Fellhauer, D.; Altmaier, M. Pure Appl. Chem. 2013, 85, 2027.
doi: 10.1351/pac-con-12-12-06 |
[49] |
Reilly, S. D.; Neu, M. P. Inorg. Chem. 2006, 45, 1839.
pmid: 16472001 |
[50] |
Cho, H. R.; Jung, E. C.; Park, K. K.; Kim, W. H.; Song, K.; Yun, J. I. Radiochim. Acta 2010, 98, 765.
doi: 10.1524/ract.2010.1782 |
[51] |
Cho, H. R.; Jung, E. C.; Park, K. K.; Song, K.; Yun, J. I. Radiochim. Acta 2010, 98, 555.
doi: 10.1524/ract.2010.1753 |
[52] |
Rao, L. F.; Tian, G. X.; Bernardo, P. D.; Zanonato, P. L. Chem.-Eur. J. 2011, 17, 10985.
doi: 10.1002/chem.v17.39 |
[53] |
Moriyama, H.; Kitamura, A.; Fujiwara, K.; Yamana, H. Radiochim. Acta 1999, 87, 97.
doi: 10.1524/ract.1999.87.34.97 |
[54] |
Moriyama, H.; Sasaki, T.; Kobayashi, T.; Takagi, I. J. Alloys Compd. 2006, 408, 1302.
|
[55] |
Kato, Y.; Kimura, T.; Yoshida, Z.; Nitani, N. Radiochim. Acta 1996, 74, 21.
doi: 10.1524/ract.1996.74.special-issue.21 |
[56] |
Maya, L. Inorg. Chem. 1984, 16, 3926.
|
[57] |
Pashalidis, I.; Czerwinski, K. R.; Fanghanel, T.; Kim, J. I. Radiochim. Acta 1997, 76, 55.
doi: 10.1524/ract.1997.76.12.55 |
[58] |
Matsika, S.; Pitzer, R. M. The Electronic Spectrum of the Neptunyl ion, NpO22+, Department of Chemistry, The Ohio State University, 1998.
|
[59] |
Ahrland, S.; Brandt, L.; Magnéli, C.; Tolboe, O.; Paasivirta, J. Acta Chem. Scand. 1968, 22, 1579.
doi: 10.3891/acta.chem.scand.22-1579 |
[60] |
Gaunt, A. J.; May, I.; Neu, M. P.; Reilly, S. D.; Scott, B. L. Inorg. Chem. 2011, 50, 4244.
doi: 10.1021/ic200525u |
[61] |
Mathur, J. N.; Choppin, G. R. Radiochim. Acta 1994, 64, 175.
doi: 10.1524/ract.1994.64.34.175 |
[62] |
Gaunt, A. J.; May, I.; Neu, M. P.; Reilly, S. D.; Scott, B. L. Inorg. Chem. 2011, 50, 4244.
doi: 10.1021/ic200525u |
[63] |
Sawant, R. M.; Chaudhuri, N. K.; Rizvi, G. H.; Patil, S. K. J. Radioanal. Nucl. Chem. 1985, 91, 41.
doi: 10.1007/BF02036308 |
[1] | Yujie Yang, Yuxiu Gong, Tianhang Gu, Wei-xian Zhang. Progress and Environmental Research Applications of Cryo-Electron Microscopy★ [J]. Acta Chimica Sinica, 2023, 81(8): 990-1001. |
[2] | Juan Wang, Huamin Xiao, Ding Xie, Yuanru Guo, Qingjiang Pan. Density Functional Theory Study of Structures of Copper-doped and Graphitic Carbon Nitride-combined Zinc Oxides and Their Boosted Nitrogen Dioxide-sensing Performance [J]. Acta Chimica Sinica, 2023, 81(11): 1493-1499. |
[3] | Yizhi Han, Jianhui Lan, Xue Liu, Weiqun Shi. Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning [J]. Acta Chimica Sinica, 2023, 81(11): 1663-1672. |
[4] | Xuezhi Yang, Dawei Lu, Weichao Wang, Hang Yang, Qian Liu, Guibin Jiang. Nano-Tracing: Recent Progress in Sourcing Tracing Technology of Nanoparticles※ [J]. Acta Chimica Sinica, 2022, 80(5): 652-658. |
[5] | Kang Liu, Bin Li, Jipan Yu, Weiqun Shi. Carbone Derivatives of Group 14: A Class of Important Reactive Intermediates [J]. Acta Chimica Sinica, 2022, 80(3): 373-385. |
[6] | Zheng Cai, Yingwen Zhang, Liping Jiang, Junjie Zhu. The Construction and Application of Mn3O4/DOX@Lip Nano-drug Delivery System Based on Fenton-Like Reaction [J]. Acta Chimica Sinica, 2021, 79(4): 481-489. |
[7] | Yan Tao, Liu Zhenhua, Song Xinyue, Zhang Shusheng. Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System [J]. Acta Chimica Sinica, 2020, 78(7): 657-669. |
[8] | Zhu Guifen, Chen Letian, Cheng Guohao, Zhao Juan, Yang Can, Zhang Yaozong, Wang Xing, Fan Jing. Efficient Removal of Levofloxacin Hydrochloride from Environment by UiO-66/CoSO4 Composites [J]. Acta Chim. Sinica, 2019, 77(5): 434-441. |
[9] | Wang Ning, Pang Hongwei, Yu Shujun, Gu Pengcheng, Song Shuang, Wang Hongqing, Wang Xiangke. Investigation of Adsorption Mechanism of Layered Double Hydroxides and Their Composites on Radioactive Uranium:A Review [J]. Acta Chim. Sinica, 2019, 77(2): 143-152. |
[10] | Liang Shan, Zong Minhua, Lou Wenyong. Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide [J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114. |
[11] | Guo Xiaoru, Yin Yongguang, Tan Zhiqiang, Liu Jingfu, Jiang Guibin. Catalytic Oxidation of Arsenic in Water by Silver Nanoparticles [J]. Acta Chim. Sinica, 2018, 76(5): 387-392. |
[12] | Jin Weize, Lu Guolin, Li Yongjun, Huang Xiaoyu. Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance [J]. Acta Chim. Sinica, 2018, 76(10): 739-748. |
[13] | Guo Yu, Liu Yu, Qi Juanjuan, Li Hui, He Lanlan, Lu Linan, Liu Cui, Gong Lidong, Zhao Dongxia, Yang Zhongzhi. Possible Mechanisms of Water Binding to the Oxygen-Evolving Complex during the S4-S0 Transition: A Theoretical Investigation [J]. Acta Chim. Sinica, 2017, 75(9): 914-921. |
[14] | Huang Xiao-yue, Wang Wei, Ling Lan, Zhang Wei-xian. Heavy Metal-nZVI Reactions: the Core-shell Structure and Applications for Heavy Metal Treatment [J]. Acta Chim. Sinica, 2017, 75(6): 529-537. |
[15] | Chen Haijun, Huang Shuyi, Zhang Zhibin, Liu Yunhai, Wang Xiangke. Synthesis of Functional Nanoscale Zero-Valent Iron Composites for the Application of Radioactive Uranium Enrichment from Environment: A Review [J]. Acta Chim. Sinica, 2017, 75(6): 560-574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||