Acta Chim. Sinica ›› 2019, Vol. 77 ›› Issue (2): 143-152.DOI: 10.6023/A18090404 Previous Articles     Next Articles



王宁a,b, 庞宏伟b, 于淑君b, 顾鹏程b, 宋爽b, 王宏青a, 王祥科b   

  1. a 南华大学 化学化工学院 衡阳 421000;
    b 华北电力大学 环境科学与工程学院 北京 102206
  • 投稿日期:2018-09-26 发布日期:2018-10-10
  • 通讯作者: 王宏青,,Tel.:0734-8281676;王祥科,,Tel.:010-61772890;
  • 作者简介:王宁,女,汉族,硕士,南华大学与华北电力大学联合培养硕士研究生.主要从事纳米复合材料吸附环境污染物的研究;庞宏伟,男,汉族,硕士,华北电力大学硕士研究生.主要从事纳米复合材料吸附铀的研究;王宏青,男,教授,南华大学化学化工学院院长,硕士研究生导师,澳大利亚Monash University的访问学者,中国核学会锕系化学会理事,中国核学会(化学会)核化学与放射化学分会环境放射化学专业委员会委员,湖南省化学化工学会副理事长,湖南省盐卤化工联盟副理事长,国际著名刊物J.Hazard.Mater.TalantaSynlettBioorg.Med.Chem.Lett.J.Mol.Struct.Spectrochim.Acta.A等审稿专家.主要从事功能分子的设计、合成和性质以及分子识别分离研究.主持国家自然基金、湖南省省市联合基金、湖南自然科学基金、湖南省教育厅重点与青年项目等项目6项;获衡阳市科技进步二等和三等奖各1项.在国内外学术期刊等发表学术论文70余篇,其中被SCI收录40余篇,EI收录3篇,获得发明专利3件,出版专著一部,编写出版教材一部,指导研究生获得湖南省优秀硕士论文1人.
  • 基金资助:


Investigation of Adsorption Mechanism of Layered Double Hydroxides and Their Composites on Radioactive Uranium:A Review

Wang Ninga,b, Pang Hongweib, Yu Shujunb, Gu Pengchengb, Song Shuangb, Wang Hongqinga, Wang Xiangkeb   

  1. a School of Chemistry and Chemical Engineering, University of South China, Hengyang 421000;
    b College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206
  • Received:2018-09-26 Published:2018-10-10
  • Contact: 10.6023/A18090404;
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21577032) and the Science Challenge Project (No. TZ201604).

With the rapid development of nuclear industry, nuclear energy, as a kind of low-carbon energy, has been widely used in the world. However, in the development and application of nuclear energy, a large amount of radionuclides, especially the radioactive uranium, have been inevitably discharged into the environment, causing serious environmental pollution and having great harm to human health. Layered double hydroxides (LDHs) have become the excellent adsorbents in environmental pollution treatments due to easy preparation, large specific surface area, the unique nanostructure and excellent ion exchange capacity. Hence, the preparation of layered double hydroxides and their composites for the efficient removal of radioactive uranium is one of the hot issues in the field of environmental science, which include coprecipitation, ion exchange, hydrothermal method, the urea hydrolysis method, aerogel, microwave-crystallization and separate nucleation/crystallization isolation method. Besides the aforementioned methods, other reported synthesis methods of LDHs include the secondary intercalation method (an intercalation method involving dissolution and the re-coprecipitation method), reconstruction method based on the "memory effect", N2 protection synthesis, mechanochemical synthesis, surface synthesis, template synthesis, and others. The modification methods of layered double hydroxides can be divided into calcination, intercalation and compounding method, which significantly increase the active sites and further improve the adsorption performance of the materials to radioactive uranium. In addition, the adsorption mechanism has been thoroughly investigated with spectroscopic analysis techniques such as Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Extended X-ray absorption fine structure (EXAFS). In conclusion, the review briefly discuss the application prospects of layered double hydroxides and their composites in the treatment of water pollution, which provide definitive reference values for the further research and practical application of environmental management in the future.

Key words: layered double hydroxides, composites, U (VI), environmental pollution, adsorption