有机化学 ›› 2021, Vol. 41 ›› Issue (2): 731-737.DOI: 10.6023/cjoc202007070 上一篇 下一篇
研究论文
收稿日期:
2020-07-30
修回日期:
2020-08-25
发布日期:
2020-09-22
通讯作者:
陈雪冰
作者简介:
基金资助:
Yu Zhao1, Zhuo Chen1, Xuebing Chen1,*()
Received:
2020-07-30
Revised:
2020-08-25
Published:
2020-09-22
Contact:
Xuebing Chen
Supported by:
文章分享
2-喹啉酮结构单元广泛存在于天然产物和药物活性分子中, 并且是重要的杂环合成砌块. 建立了一种乙酸酐促进下, 环状β-烯胺酮和丙二酸通过[3+3]环合反应构建2-喹啉酮化合物的新方法, 产率为70%~87%. 该方法具有原料简单易得、操作简便、路线简洁、目标化合物可修饰性强等优点.
赵瑜, 陈卓, 陈雪冰. 乙酸酐促进的[3+3]环化反应合成2-喹啉酮衍生物[J]. 有机化学, 2021, 41(2): 731-737.
Yu Zhao, Zhuo Chen, Xuebing Chen. Synthesis of 2-Quinolinone Derivatives via [3+3] Cyclization Promoted by Acetic Anhydride[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 731-737.
Entry | Solvent | Additive | T/℃ | t/h | Yieldb/% |
---|---|---|---|---|---|
1 | EtOH | — | r.t. | 4 | N.R. |
2 | EtOH | — | Reflux | 4 | N.R. |
3 | EtOH | HOAc | Reflux | 4 | N.R |
4 | EtOH | CF3COOH | Reflux | 4 | N.R |
5 | EtOH | CF3SO3H | Reflux | 4 | N.R |
6 | EtOH | DBU | Reflux | 4 | N.R |
7 | EtOH | Piperidine | Reflux | 4 | N.R. |
8 | EtOH | Ac2O | Reflux | 2 | 60 |
9 | EtOH | Ac2O | 50 | 2 | 70 |
10 | CH3CN | Ac2O | 50 | 2 | 67 |
11 | HOAc | Ac2O | 50 | 2 | 75 |
12 | Ac2O | Ac2O | 50 | 2 | 84 |
13 | Ac2O | Ac2O | r.t | 2 | N.R. |
14 | Ac2O | TsOH | 50 | 2 | 15 |
15 | CH2Cl2 | DCC/DMAP | r.t | 4 | N.R. |
16c | Ac2O | Ac2O | 50 | 4 | 86 |
17d | Ac2O | Ac2O | 50 | 4 | N.R. |
Entry | Solvent | Additive | T/℃ | t/h | Yieldb/% |
---|---|---|---|---|---|
1 | EtOH | — | r.t. | 4 | N.R. |
2 | EtOH | — | Reflux | 4 | N.R. |
3 | EtOH | HOAc | Reflux | 4 | N.R |
4 | EtOH | CF3COOH | Reflux | 4 | N.R |
5 | EtOH | CF3SO3H | Reflux | 4 | N.R |
6 | EtOH | DBU | Reflux | 4 | N.R |
7 | EtOH | Piperidine | Reflux | 4 | N.R. |
8 | EtOH | Ac2O | Reflux | 2 | 60 |
9 | EtOH | Ac2O | 50 | 2 | 70 |
10 | CH3CN | Ac2O | 50 | 2 | 67 |
11 | HOAc | Ac2O | 50 | 2 | 75 |
12 | Ac2O | Ac2O | 50 | 2 | 84 |
13 | Ac2O | Ac2O | r.t | 2 | N.R. |
14 | Ac2O | TsOH | 50 | 2 | 15 |
15 | CH2Cl2 | DCC/DMAP | r.t | 4 | N.R. |
16c | Ac2O | Ac2O | 50 | 4 | 86 |
17d | Ac2O | Ac2O | 50 | 4 | N.R. |
Entry | R | R1 | 1 | 3 | Yieldb/% |
---|---|---|---|---|---|
1 | 4-FC6H4 | H | 1a | 3a | 82 |
2 | 3-FC6H4 | H | 1b | 3b | 87 |
3 | 4-ClC6H4 | H | 1c | 3c | 80 |
4 | 3-ClC6H4 | H | 1d | 3d | 81 |
5 | 2-ClC6H4 | H | 1e | 3e | 76 |
6 | 4-BrC6H4 | H | 1f | 3f | 78 |
7 | 3-BrC6H4 | H | 1g | 3g | 81 |
8 | 4-CH3C6H4 | H | 1h | 3h | 80 |
9 | 3-CH3C6H4 | H | 1i | 3i | 75 |
10 | 4-NO2C6H4 | CH3 | 1j | 3j | 70 |
11 | 4-FC6H4 | CH3 | 1k | 3k | 81 |
12 | 3-FC6H4 | CH3 | 1l | 3l | 84 |
13 | 4-ClC6H4 | CH3 | 1m | 3m | 85 |
14 | 3-ClC6H4 | CH3 | 1n | 3n | 82 |
15 | 4-BrC6H4 | CH3 | 1o | 3o | 85 |
16 | C6H5 | CH3 | 1p | 3p | 83 |
17 | 4-CH3C6H4 | CH3 | 1q | 3q | 79 |
18 | 3-CH3C6H4 | CH3 | 1r | 3r | 80 |
19 | 3-CH3C6H4 | CH3 | 1s | 3s | 83 |
20 | Butyl | CH3 | 1t | 3t’ | 25 |
Entry | R | R1 | 1 | 3 | Yieldb/% |
---|---|---|---|---|---|
1 | 4-FC6H4 | H | 1a | 3a | 82 |
2 | 3-FC6H4 | H | 1b | 3b | 87 |
3 | 4-ClC6H4 | H | 1c | 3c | 80 |
4 | 3-ClC6H4 | H | 1d | 3d | 81 |
5 | 2-ClC6H4 | H | 1e | 3e | 76 |
6 | 4-BrC6H4 | H | 1f | 3f | 78 |
7 | 3-BrC6H4 | H | 1g | 3g | 81 |
8 | 4-CH3C6H4 | H | 1h | 3h | 80 |
9 | 3-CH3C6H4 | H | 1i | 3i | 75 |
10 | 4-NO2C6H4 | CH3 | 1j | 3j | 70 |
11 | 4-FC6H4 | CH3 | 1k | 3k | 81 |
12 | 3-FC6H4 | CH3 | 1l | 3l | 84 |
13 | 4-ClC6H4 | CH3 | 1m | 3m | 85 |
14 | 3-ClC6H4 | CH3 | 1n | 3n | 82 |
15 | 4-BrC6H4 | CH3 | 1o | 3o | 85 |
16 | C6H5 | CH3 | 1p | 3p | 83 |
17 | 4-CH3C6H4 | CH3 | 1q | 3q | 79 |
18 | 3-CH3C6H4 | CH3 | 1r | 3r | 80 |
19 | 3-CH3C6H4 | CH3 | 1s | 3s | 83 |
20 | Butyl | CH3 | 1t | 3t’ | 25 |
[1] |
(a) Cho J-Y.; Bae, S.-H.; Kim, H.-K.; Lee, M.-Y.; Choi, Y.-S.; Jin, B.-R.; Lee, H.-J.; Jeong, H.-Y.; Lee, Y.-G.; Moon, J.-K. J. Agric. Food Chem. 2015, 63, 3587.
doi: 10.1021/acs.jafc.5b01027 pmid: 1965201 |
(b) He J.; Lion U.; Sattler S.; Gollmick F.A.; Grabley S.; Cai J.; Meiners M.; Schünke H.; Schaumann K.; Dechert U.; Krohn M. J. Nat. Prod. 2005, 68, 1397.
doi: 10.1021/np058018g pmid: 1965201 |
|
(c) Freeman G.A.; Andrews III C.W.; Hopkins A.L.; Lowell G.S.; Schaller L.T.; Cowan J.R.; Gonzales S.S.; Koszalka G.W.; Hazen R.J.; Boone L.R.; Ferris R.G.; Creech K.L.; Roberts G.B.; Short S.A.; Weaver K.; Reynolds D.J.; Milton J.; Ren J.; Stuart D.I.; Stammers D.K.; Chan J.H. J. Med. Chem. 2004, 47, 5923.
pmid: 1965201 |
|
(d) Godard A.; Fourquez J.M.; Tamion R.; Marsais F.; Quéguiner G. Synlett 1994, 235.
pmid: 1965201 |
|
(e) Goossen L.J.; Deng G.; Levy L.M. Science 2006, 313, 662.
doi: 10.1126/science.1128684 pmid: 1965201 |
|
(f) Nakatsu T.; Johns T.; Kubo I.; Milton K.; Sakai M.; Chatani K.; Saito K.; Yamagiwa Y.; Kamikawa K. J. Nat. Prod. 1990, 53, 1508.
pmid: 1965201 |
|
[2] |
(a) Arya K.; Agarwal M. Bioorg. Med. Chem. Lett. 2007, 17, 86.
doi: 10.1016/j.bmcl.2006.09.082 |
(b) Chen Y.-F.; Lin Y.-C.; Huang P.-K.; Chan H.-C.; Kuo S.-C.; Lee K.-H.; Huang L.-J. Bioorg. Med. Chem. Lett. 2013, 21, 5064.
doi: 10.1016/j.bmc.2013.06.046 |
|
[3] |
Tedesco D.; Shaw A.N.; Bambal R.; Chai D.; Concha N.O.; Darcy M.G.; Dhanak D.; Fitch D.M.; Gates A.; Gerhardt W.G.; Halegoua D.L.; Han C.; Hofmann G.A.; Johnston V.K.; Kaura A.C.; Liu N.; Keenan R.M.; Lin-Goerke J.; Sarisky R.T.; Wiggall K.J.; Zimmerman M.N.; Duffy K.J. J. Med. Chem. 2006, 49, 3, 971.
doi: 10.1021/jm050855s |
[4] |
Han S.; Zhang F.-F.; Qian H.-Y.; Chen L.-L.; Pu J.-B.; Xie X.; Chen J.-Z. J. Med. Chem. 2015, 58, 5751.
doi: 10.1021/acs.jmedchem.5b00227 |
[5] |
(a) Mizutani N.; Aoki Y.; Nabe T.; Ishiwara M.; Yoshino S.; Takagaki H.; Kohno S. Eur. J. Pharmacol. 2009, 602, 138.
doi: 10.1016/j.ejphar.2008.11.006 |
(b) Ishiwara M.; Aoki Y.; Takagaki H.; Ui, Michio.; Okajima F.J. Pharmacol. Exp. Ther. 2003, 307, 583.
doi: 10.1124/jpet.103.055145 |
|
[6] |
(a) Kulagowski J.J.; Baker R.; Curtis N.R.; Mawer I.M.; Moseley A.M.; Ridgill M.P.; Rowley M.; Stansfield I.; Leeson P.D. J. Med. Chem. 1994, 37, 1402.
pmid: 8182696 |
(b) Uchida S.; Hiraoka S.; Namiki N. Chem. Pharm. Bull. 2015, 63, 354.
doi: 10.1248/cpb.c15-00038 pmid: 8182696 |
|
[7] |
(a) Zhou T.; Wang D.; Qian J.; Zhao W. Chin. J. Org. Chem. 2017, 37, 1548. (in Chinese)
doi: 10.6023/cjoc201612001 pmid: 15876072 |
周婷, 王道林, 钱建华, 赵伟, 有机化学, 2017, 37, 1548.).
doi: 10.6023/cjoc201612001 pmid: 15876072 |
|
(b) Zhao Q.; Yao C.; Wang X. Chin. J. Org. Chem. 2016, 36, 1932. (in Chinese)
doi: 10.6023/cjoc201602001 pmid: 15876072 |
|
赵群, 姚昌盛, 王香善, 有机化学, 2016, 36, 1932.).
doi: 10.6023/cjoc201602001 pmid: 15876072 |
|
(c) Glasnov T.N.; Stadlbauer W.; Kappe C.O. J. Org. Chem. 2005, 70, 3864.
pmid: 15876072 |
|
(d) Klásek A.; Křemen F.; Křemenová H.; Lyčka A.; Rouchal M. Tetrahedron 2017, 73, 1583.
doi: 10.1016/j.tet.2017.02.007 pmid: 15876072 |
|
(e) Chilin A.; Marzano C.; Baccichetti F.; Simonato M.; Guiotto A. Bioorg. Med. Chem. Lett. 2003, 11, 1311.
doi: 10.1016/S0968-0896(02)00618-1 pmid: 15876072 |
|
[8] |
(a) Manikandan R.; Jeganmohan M. Org. Lett. 2014, 16, 3568.
doi: 10.1021/ol501548e |
(b) Zhang X.; Liu H.; Jia Y.-A. Chem. Commun. 2016, 52, 7665.
doi: 10.1039/C6CC02600A |
|
(c) Wu J.-L.; Xiang S.-H.; Zeng J.; Leow M.; Liu X.-W. Org. Lett. 2015, 17, 222.
doi: 10.1021/ol503292p |
|
[9] |
Zhong S.-S.; Huang P.; Wang X.-Y.; Lin M.; Ge C.-H. Chin. J. Org. Chem. 2018, 38, 1199. (in Chinese)
doi: 10.6023/cjoc201711011 pmid: 3AFD8901-9B86-4B47-91B7-8368BE84E607 |
仲帅帅, 黄鹏, 王兴越, 林觅, 葛春华, 有机化学, 2018, 38, 1199.).
doi: 10.6023/cjoc201711011 pmid: 3AFD8901-9B86-4B47-91B7-8368BE84E607 |
|
[10] |
(a) Chen X.; Cui X.; Wu Y. Org. Lett. 2016, 18, 2411.
doi: 10.1021/acs.orglett.6b00923 |
(b) Ikbal M.; Banerjee R.; Atta S.; Jana A.; Dhara D.; Anoop A.; Singh N. D. P.Chem. Eur. J. 2012, 18, 11968..
doi: 10.1002/chem.201104065 |
|
[11] |
Kulkarni B.A.; Ganesan A. Chem. Commun. 1998, 7, 785.
|
[12] |
Park S.-J.; Lee J.-C.; Lee K.-I. Bull. Korean Chem. Soc. 2007, 28, 1203.
doi: 10.5012/bkcs.2007.28.7.1203 |
[13] |
Fu L.-Q.; Cao X.-J.; Wan J.-P.; Liu Y.-Y. Chin. J. Chem. 2020, 38, 254.
doi: 10.1002/cjoc.v38.3 |
[14] |
(a) Xu H.; Zhou B.; Zhou P.; Zhou J.; Shen Y.-H.; Yu F.-C.; Li L.-L. Chem. Commun. 2016, 52, 8002.
doi: 10.1039/C6CC02659A |
(b) Jiang B.; Yi M.-S.; Shi F.; Tu S.-J.; Pindi S.; McDowell P.; Li G.-G. Chem. Commun. 2012, 48, 808.
doi: 10.1039/C1CC15913E |
|
(c) Hu J.-D.; Cao C.-P.; Lin W.; Hu M.-H.; Huang Z.-B.; Shi D.-Q. J. Org. Chem. 2014, 79, 793.
|
|
(d) Hao W.-J.; Wang J.-Q.; Xu X.-P.; Zhang S.-L.; Ji S.-J. J. Org. Chem. 2013, 78, 12362.
doi: 10.1021/jo401773j |
|
(e) Yu F.-C.; Zhou B.; Xu H.; Chang K.-J.; Shen Y.-H. Tetrahedron Lett. 2015, 56, 837.
doi: 10.1016/j.tetlet.2014.12.118 |
|
(f) Miao H.-J.; Wang L.-L.; Han H.-B.; Zhao,. Y.-D.; Wang, L.-Q.; Bu, Z.-W.Chem. Sci. 2020, 11, 1418.
doi: 10.1039/C9SC04880D |
|
(g) Wang L.-L.; Han H.-B.; Cui Z.-H.; Zhao J.-W.; Bu Z.-W.; Wang Q.-L. Org. Lett. 2020, 22, 873.
doi: 10.1021/acs.orglett.9b04398 |
|
(h) Usman M.; Hu X.-D.; Liu W.-B. Chin. J. Chem. 2020, 38, 737.
doi: 10.1002/cjoc.v38.7 |
|
(i) Cao W.-B.; Liu B.-B.; Xu X.-P.; Ji S.-J. Org. Chem. Front. 2018, 5, 1194.
doi: 10.1039/C7QO01154G |
|
[15] |
(a) Makawana J.A.; Patel M.P.; Patel R.G.; Chin. Chem. Lett. 2012, 23, 427.
doi: 10.1016/j.cclet.2012.01.017 |
(b) Hundsdörfer C.; Hemmerling H.J.; Götz C.; Totzke F.; Bednarski P.; Borgne M.L.; Jose J. Bioorg. Med. Chem. 2012, 20, 2282.
doi: 10.1016/j.bmc.2012.02.017 |
|
[16] |
Chen X.-B.; Bai H.-R.; Huang C. Chin. J. Org. Chem. 2017, 37, 881. (in Chinese)
doi: 10.6023/cjoc201611003 pmid: CC020ECD-5372-452E-A616-FBE8CF597AFA |
陈雪冰, 白海瑞, 黄超, 有机化学, 2017, 37, 881.).
doi: 10.6023/cjoc201611003 pmid: CC020ECD-5372-452E-A616-FBE8CF597AFA |
|
[17] |
Luo Q.; Huang R.; Xiao Q.; Yao Y.; Lin J.; Yan S.-J. J. Org. Chem. 2019, 84, 1999.
doi: 10.1021/acs.joc.8b03008 |
[1] | 程华, 汪万强, 黄琳, 崔萍, 吴琼友. 新型含喹啉酮结构的三唑磺酰胺衍生物的合成及其对线粒体复合物III的抑制活性[J]. 有机化学, 2016, 36(5): 1065-1072. |
[2] | 李爱军, 冯宝, 刘倩春. 氢化铝锂一步还原β-烯胺酮合成1,3-胺基醇[J]. 有机化学, 2011, 31(01): 106-109. |
[3] | 王宏社,苗建英. NaHSO4•SiO2催化合成β-烯胺酮(酯)[J]. 有机化学, 2007, 27(02): 266-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||