有机化学 ›› 2022, Vol. 42 ›› Issue (1): 54-66.DOI: 10.6023/cjoc202107016 上一篇 下一篇
综述与进展
收稿日期:
2021-07-06
修回日期:
2021-08-25
发布日期:
2021-09-08
通讯作者:
吕爱风
基金资助:
Received:
2021-07-06
Revised:
2021-08-25
Published:
2021-09-08
Contact:
Aifeng Lv
Supported by:
文章分享
由双极性有机场效应晶体管(OFETs)制备的有机互补电路具有操作电压低、能耗低和成本低等优点, 在有机互补电路方面有很大的应用前景, 引起了科学家们极大的研究兴趣. 同时具有高且匹配的空穴迁移率和电子迁移率的双极性有机半导体分子是制备高性能有机互补电路的必要条件之一, 然而迄今为止该类双极性有机半导体分子的报道比较少, 大部分双极性有机半导体分子的空穴和电子传输不匹配; 高性能单极性有机半导体分子报道已有成千上万种, 选择迁移率相匹配的n型有机半导体分子和p型有机半导体分子构筑具有垂直双层导电沟道的有机场效应晶体管是制备高性能双极性有机场效应晶体管的有效方法. 总结了构筑基于有机双层的高性能双极性有机场效应晶体管的必要条件, 已报道的有机双层场效应晶体管的电学性能, 以及影响双极性场效应性能的因素.
李敏, 吕爱风. 基于有机双层的双极性有机场效应晶体管研究进展[J]. 有机化学, 2022, 42(1): 54-66.
Min Li, Aifeng Lv. Recent Progress in Ambipolar Organic Field-Effect Transistors Based on Organic Semiconductor Bilayer[J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 54-66.
OSC | μh/(cm2•V–1•s–1) | μe/(cm2•V–1•s–1) | HOMO/eV | LUMO/eV |
---|---|---|---|---|
1A/1B[ | 0.004 | 0.005 | —/–7.1 | —/-3.8 |
1D/1C[ | 2.96×10–3 | 9.49×10–3 | -6.1/-5.95 | –4.9/–4.35 |
1A/1E[ | 0.0035 | 0.0095 | —/–6.7 | —/–4.3 |
1F/1D[ | 23.7 | 0.06 | –5.4/–6.1 | –2.4/–4.7 |
1B/1H[ | 0.2 | 0.04 | –7.1/–5.0 | –3.8/–3.0 |
1G/1D[ | 0.12 | 3×10–2 | —/–6.1 | —/–4.9 |
1D/1C[ | 10–6 | 10–6 | –6.1/–5.2 | –4.9/–3.5 |
1H/1I[ | 0.41 | 0.40 | –5.0/–5.4 | –3.0/–3.4 |
1C/1J[ | 1.8×10–4 | 2.1×10–4 | –5.2/–5.3 | –3.5/–4.0 |
1H/1K[ | 0.34 | 0.03 | -5.0/–6.5 | –3.0/–4.0 |
1L/1M[ | 5.0×10–2 | 1.6×10–2 | –5.3/–4.8 | -3.2/–2.8 |
1N/1O[ | 1.7×10–2 | 2.2×10–2 | —/–7.24 | —/–3.61 |
1P/1Q[ | 0.87 | 0.82 | –5.75/–5.60 | –4.15/–2.60 |
OSC | μh/(cm2•V–1•s–1) | μe/(cm2•V–1•s–1) | HOMO/eV | LUMO/eV |
---|---|---|---|---|
1A/1B[ | 0.004 | 0.005 | —/–7.1 | —/-3.8 |
1D/1C[ | 2.96×10–3 | 9.49×10–3 | -6.1/-5.95 | –4.9/–4.35 |
1A/1E[ | 0.0035 | 0.0095 | —/–6.7 | —/–4.3 |
1F/1D[ | 23.7 | 0.06 | –5.4/–6.1 | –2.4/–4.7 |
1B/1H[ | 0.2 | 0.04 | –7.1/–5.0 | –3.8/–3.0 |
1G/1D[ | 0.12 | 3×10–2 | —/–6.1 | —/–4.9 |
1D/1C[ | 10–6 | 10–6 | –6.1/–5.2 | –4.9/–3.5 |
1H/1I[ | 0.41 | 0.40 | –5.0/–5.4 | –3.0/–3.4 |
1C/1J[ | 1.8×10–4 | 2.1×10–4 | –5.2/–5.3 | –3.5/–4.0 |
1H/1K[ | 0.34 | 0.03 | -5.0/–6.5 | –3.0/–4.0 |
1L/1M[ | 5.0×10–2 | 1.6×10–2 | –5.3/–4.8 | -3.2/–2.8 |
1N/1O[ | 1.7×10–2 | 2.2×10–2 | —/–7.24 | —/–3.61 |
1P/1Q[ | 0.87 | 0.82 | –5.75/–5.60 | –4.15/–2.60 |
OSC | μh/(cm2•V–1•s–1) | Ion/off(hole) | μe/(cm2•V–1•s–1) | Ion/off(electron) | HOMO/eV | Conducting band/eV |
---|---|---|---|---|---|---|
ZnO/1H[ | 0.34 | 103 | 0.38 | 104 | –5.0 | –4.4 |
ZnInOx/1H[ | 0.14 | — | 13.8 | — | –5.0 | — |
InOx/1H[ | 1.1 | — | 0.1 | — | –5.0 | — |
MoS2/2A[ | 0.36 | 103 | 1.27 | 103 | –5.36 | –4.0 |
ZnO/2B[ | 2.4 | 103 | 4.5 | 103 | — | –4.4 |
IGZOs/2C[ | 4.5 | — | 5.1 | — | –5.3 | –4.3 |
IGZOs/1F[ | 2.8 | — | 5.1 | — | –5.1 | –4.3 |
ZnO/1N[ | 5.1×10–2 | — | 1.2×10–2 | — | –5.1 | –4.3 |
IGO/1N[1B] | 1.09 | 102 | 1.80 | 103 | — | — |
InO/2D[ | 1.1 | 3.8×102 | 1.5 | 1.2×102 | –5.36 | — |
OSC | μh/(cm2•V–1•s–1) | Ion/off(hole) | μe/(cm2•V–1•s–1) | Ion/off(electron) | HOMO/eV | Conducting band/eV |
---|---|---|---|---|---|---|
ZnO/1H[ | 0.34 | 103 | 0.38 | 104 | –5.0 | –4.4 |
ZnInOx/1H[ | 0.14 | — | 13.8 | — | –5.0 | — |
InOx/1H[ | 1.1 | — | 0.1 | — | –5.0 | — |
MoS2/2A[ | 0.36 | 103 | 1.27 | 103 | –5.36 | –4.0 |
ZnO/2B[ | 2.4 | 103 | 4.5 | 103 | — | –4.4 |
IGZOs/2C[ | 4.5 | — | 5.1 | — | –5.3 | –4.3 |
IGZOs/1F[ | 2.8 | — | 5.1 | — | –5.1 | –4.3 |
ZnO/1N[ | 5.1×10–2 | — | 1.2×10–2 | — | –5.1 | –4.3 |
IGO/1N[1B] | 1.09 | 102 | 1.80 | 103 | — | — |
InO/2D[ | 1.1 | 3.8×102 | 1.5 | 1.2×102 | –5.36 | — |
[1] |
(a) Sun, S.; Li, Y.; Zhang, S. Chin. Phys. B 2020, 29, 058503.
doi: 10.1088/1674-1056/ab7e96 |
(b) Jo, I. Y.; Park, J.-G.; Moon, J.-H.; Jung, J. Y.; Kim, D. E.; Baeg, K.-J. Org. Electron. 2019, 75, 105358.
doi: 10.1016/j.orgel.2019.07.016 |
|
(c) Kwon, H.; Yoo, H.; Nakano, M.; Takimiya, K.; Kim, J.-J.; Kim, J. K. RSC Adv. 2020, 10, 1910.
doi: 10.1039/C9RA09195E |
|
(d) Wang, L.; Wang, C.; Yu, X.; Zheng, L.; Zhang, X.; Hu, W. Sci. China Mater. 2020, 63, 122.
doi: 10.1007/s40843-019-9453-5 |
|
(e) Zhou, X.; Wang, Z.; Song, R. X.; Zhang, Y. D.; Zhu, L. A.; Xue, D.; Huang, L. Z.; Chi, L. F. J. Mater. Chem. C 2021, 9, 1584.
doi: 10.1039/D0TC04843G |
|
(f) Becharguia, H.; Mahdouani, M.; Bourguiga, R. Eur. Phys. J.-Appl. Phys. 2021, 93, 10.
|
|
(g) Wan, Y. J.; Deng, J.; Wu, W. L.; Zhou, J. D.; Niu, Q.; Li, H. Y.; Yu, H. K.; Gu, C.; Ma, Y. G. ACS Appl. Mater. Inter. 2020, 12, 43976.
doi: 10.1021/acsami.0c12842 |
|
[2] |
(a) Sonar, P.; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A. Adv. Mater. 2010, 22, 5409.
doi: 10.1002/adma.201002973 |
(b) Yuen, J. D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger, A. J.; Wudl, F. J. Am. Chem. Soc. 2011, 133, 20799.
doi: 10.1021/ja205566w |
|
(c) Chen, Z.; Lee, M. J.; Shahid Ashraf, R.; Gu, Y.; Albert-Seifried, S.; Meedom Nielsen, M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H. Adv. Mater. 2012, 24, 647.
doi: 10.1002/adma.201102786 |
|
(d) Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713.
doi: 10.1021/ja308927g |
|
(e) Fan, J.; Yuen, J. D.; Wang, M.; Seifter, J.; Seo, J.-H.; Mohebbi, A. R.; Zakhidov, D.; Heeger, A.; Wudl, F. Adv. Mater. 2012, 24, 2186.
doi: 10.1002/adma.201103836 |
|
[3] |
(a) Jiang, L.; Dong, H.; Hu, W. J. Mater. Chem. 2010, 20, 4994.
doi: 10.1039/b925875b |
(b) Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158.
doi: 10.1002/adma.v25.43 |
|
(c) Gao, X.; Zhao, Z. Sci. China Chem. 2015, 58, 947.
doi: 10.1007/s11426-015-5399-5 |
|
(d) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010, 22, 3876.
doi: 10.1002/adma.200903628 |
|
(e) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.
doi: 10.1021/cr100380z |
|
(f) Barłóg, M.; Zhang, X.; Kulai, I.; Yang, D. S.; Sredojevic, D. N.; Sil, A.; Ji, X.; Salih, K. S. M.; Bazzi, H. S.; Bronstein, H.; Fang, L.; Kim, J.; Marks, T. J.; Guo, X.; Al-Hashimi, M. Chem. Mater. 2019, 31, 9488.
doi: 10.1021/acs.chemmater.9b03525 |
|
[4] |
Sun, B.; Hong, W.; Aziz, H.; Li, Y. Polym. Chem. 2015, 6, 938.
doi: 10.1039/C4PY01193G |
[5] |
(a) Lv, A.; Li, Y.; Yue, W.; Jiang, L.; Dong, H.; Zhao, G.; Meng, Q.; Jiang, W.; He, Y.; Li, Z.; Wang, Z.; Hu, W. Chem. Commun. 2012, 48, 5154.
doi: 10.1039/c2cc31619f |
(b) Lv, A.; Freitag, M.; Chepiga, K. M.; Schäfer, A. H.; Glorius, F.; Chi, L. Angew. Chem., Int. Ed. 2018, 57, 4792.
doi: 10.1002/anie.v57.17 |
|
(c) Lv, A.; Stolte, M.; Würthner, F. Angew. Chem., Int. Ed. 2015, 127, 10658.
doi: 10.1002/ange.201504190 |
|
(d) Wen, J.; Xiao, C.; Lv, A.; Hayashi, H.; Zhang, L. Chem. Commun. 2018, 54, 5542.
doi: 10.1039/C8CC02534G |
|
(e) Luo, Y.; Yao, L.; Gu, W.; Xiao, C.; Liao, H.; Ravva, M. K.; Wang, Y.; Li, Z.; Zhang, L.; Lv, A.; Yue, W. Org. Electron. 2020, 85, 105895.
doi: 10.1016/j.orgel.2020.105895 |
|
(f) Warren, P. R.; Hardigree, J. F. M.; Lauritzen, A. E.; Nelson, J.; Riede, M. AIP Adv. 2019, 9, 035202.
doi: 10.1063/1.5080505 |
|
(g) Torres-Moya, I.; Carrillo, J. R.; Gomez, M. V.; Velders, A. H.; Donoso, B.; Rodriguez, A. M.; Diaz-Ortiz, A.; Navarrete, J. T. L.; Ortiz, R. P.; Prieto, P. Dyes Pigm. 2021, 191, 14.
|
|
(h) Nam, S.; Khim, D.; Martinez, G. T.; Varambhia, A.; Nellist, P. D.; Kim, Y.; Anthopoulos, T. D.; Bradley, D. D. C. Adv. Mater. 2021, 33, 2100421.
doi: 10.1002/adma.v33.31 |
|
[6] |
Dodabalapur, A.; Katz, H. E.; Torsi, L.; Haddon, R. C. Science 1995, 269, 1560.
pmid: 17789448 |
[7] |
(a) Shi, J. W.; Wang, H. B.; Song, D.; Tian, H. K.; Geng, Y. H.; Yan, D. H. Adv. Funct. Mater. 2007, 17, 397.
doi: 10.1002/(ISSN)1616-3028 |
(b) An, M.-J.; Seo, H.-S.; Zhang, Y.; Oh, J.-D.; Choi, J.-H. Appl. Phys. Lett. 2010, 97, 023506.
doi: 10.1063/1.3460282 |
|
[8] |
(a) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
pmid: 17378616 |
(b) Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
doi: 10.1038/nature03376 pmid: 17378616 |
|
(c) Cornil, J.; Brédas, J. L.; Zaumseil, J.; Sirringhaus, H. Adv. Mater. 2007, 19, 1791.
doi: 10.1002/(ISSN)1521-4095 pmid: 17378616 |
|
(d) Yang, C.-Y.; Dhananjay; Cheng, S.-S.; Ou, C.-W.; Chuang, Y.-C.; Wu, M.-C.; Chu, C.-W. Appl. Phys. Lett. 2008, 92, 253307.
doi: 10.1063/1.2939553 pmid: 17378616 |
|
(e) Yoon, M.-H.; Kim, C.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 12851.
doi: 10.1021/ja063290d pmid: 17378616 |
|
(f) Seo, J. H.; Chang, G. S.; Wilks, R. G.; Whang, C. N.; Chae, K. H.; Cho, S.; Yoo, K.-H.; Moewes, A. J. Phys. Chem. B 2008, 112, 16266.
doi: 10.1021/jp807355q pmid: 17378616 |
|
[9] |
(a) Dodabalapur, A.; Katz, H. E.; Torsi, L.; Haddon, R. C. Appl. Phys. Lett. 1996, 68, 1108.
doi: 10.1063/1.115728 |
(b) Rost, C.; Gundlach, D. J.; Karg, S.; Rieß, W. J. Appl. Phys. 2004, 95, 5782.
doi: 10.1063/1.1702141 |
|
(c) Wang, J.; Wang, H.; Yan, X.; Huang, H.; Yan, D. Chem. Phys. Lett. 2005, 407, 87.
doi: 10.1016/j.cplett.2005.03.072 |
|
[10] |
Obaidulla, S. M.; Giri, P. K. J. Mater. Chem. C 2015, 3, 7118.
doi: 10.1039/C5TC01130B |
[11] |
(a) Kim, D.-K.; Oh, J.-D.; Shin, E.-S.; Seo, H.-S.; Choi, J.-H. J. Appl. Phys. 2014, 115, 164503.
doi: 10.1063/1.4873299 |
(b) Kang, S. J.; Yi, Y.; Kim, C. Y.; Cho, K.; Seo, J. H.; Noh, M.; Jeong, K.; Yoo, K.-H.; Whang, C. N. Appl. Phys. Lett. 2005, 87, 233502.
doi: 10.1063/1.2138810 |
|
[12] |
(a) Ye, R.; Baba, M.; Oishi, Y.; Mori, K.; Suzuki, K. Appl. Phys. Lett. 2005, 86, 253505.
doi: 10.1063/1.1949731 |
(b) Ye, R.; Baba, M.; Suzuki, K.; Mori, K. Appl. Surf. Sci. 2008, 254, 7885.
doi: 10.1016/j.apsusc.2008.03.048 |
|
[13] |
Hu, Y.; Zhang, N.; Lin, J.; Qin, L.; Liu, X. Appl. Phys. Express 2012, 5, 095601.
doi: 10.1143/APEX.5.095601 |
[14] |
Zhu, X.; Zhang, Y.; Ren, X.; Yao, J.; Guo, S.; Zhang, L.; Wang, D.; Wang, G.; Zhang, X.; Li, R.; Hu, W. Small 2019, 15, 1902187.
doi: 10.1002/smll.v15.34 |
[15] |
Yan, Y.; Sun, Q.-J.; Gao, X.; Deng, P.; Zhang, Q.; Wang, S.-D. Appl. Phys. Lett. 2013, 103, 073303.
doi: 10.1063/1.4818644 |
[16] |
Imai, S.; Yanagi, H.; Hotta, S. Org. Electron. 2013, 14, 80.
doi: 10.1016/j.orgel.2012.10.021 |
[17] |
Janasz, L.; Marszalek, T.; Zajaczkowski, W.; Borkowski, M.; Goldeman, W.; Kiersnowski, A.; Chlebosz, D.; Rogowski, J.; Blom, P.; Ulanski, J.; Pisula, W. J. Mater. Chem. C 2018, 6, 7830.
doi: 10.1039/C8TC01502C |
[18] |
Yan, H.; Kagata, T.; Okuzaki, H. Appl. Phys. Lett. 2009, 94, 023305.
doi: 10.1063/1.3072608 |
[19] |
(a) Huang, S.; Peng, B.; Chan, P. K. L. Adv. Electron. Mater. 2017, 3, 1700268.
doi: 10.1002/aelm.201700268 |
(b) Wei, Z.; Xu, W.; Hu, W.; Zhu, D. Langmuir 2009, 25, 3349.
doi: 10.1021/la804200f |
|
(c) Kuwahara, E.; Kubozono, Y.; Hosokawa, T.; Nagano, T.; Masunari, K.; Fujiwara, A. Appl. Phys. Lett. 2004, 85, 4765.
doi: 10.1063/1.1818336 |
|
[20] |
Di Girolamo, F. V.; Barra, M.; Chiarella, F.; Lettieri, S.; Salluzzo, M.; Cassinese, A. Phys. Rev. B 2012, 85, 125310.
doi: 10.1103/PhysRevB.85.125310 |
[21] |
Loi, M. A.; Rost-Bietsch, C.; Murgia, M.; Karg, S.; Riess, W.; Muccini, M. Adv. Funct. Mater. 2006, 16, 41.
doi: 10.1002/(ISSN)1616-3028 |
[22] |
(a) Lee, J.; Han, A. R.; Yu, H.; Shin, T. J.; Yang, C.; Oh, J. H. J. Am. Chem. Soc. 2013, 135, 9540.
doi: 10.1021/ja403949g |
(b) Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Adv. Mater. 2014, 26, 2636.
doi: 10.1002/adma.201305981 |
|
(c) Xiao, C.; Zhao, G.; Zhang, A.; Jiang, W.; Janssen, R. A. J.; Li, W.; Hu, W.; Wang, Z. Adv. Mater. 2015, 27, 4963.
doi: 10.1002/adma.201502617 |
|
(d) Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2015, 27, 6753.
doi: 10.1002/adma.201502896 |
|
(e) Liu, J.; Liu, J.; Zhang, J.; Li, C.; Cui, Q.; Teng, F.; Li, H.; Jiang, L. J. Mater. Chem. C 2020, 8, 4303.
doi: 10.1039/D0TC00546K |
|
[23] |
Xiong, N.; Xiao, P.; Li, M.; Xu, H.; Yao, R.; Wen, S.; Peng, J. Appl. Phys. Lett. 2013, 102, 242102.
doi: 10.1063/1.4811416 |
[24] |
(a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
doi: 10.1002/(ISSN)1521-4095 |
(b) Katz, H. E. Chem. Mater. 2004, 16, 4748.
doi: 10.1021/cm049781j |
|
[25] |
Pal, B. N.; Trottman, P.; Sun, J.; Katz, H. E. Adv. Funct. Mater. 2008, 18, 1832.
doi: 10.1002/adfm.200701430 |
[26] |
Yang, C.; Kwack, Y.; Kim, S. H.; An, T. K.; Hong, K.; Nam, S.; Park, M.; Choi, W.-S.; Park, C. E. Org. Electron. 2011, 12, 411.
doi: 10.1016/j.orgel.2010.12.008 |
[27] |
(a) Koo, J. B.; Ku, C. H.; Lim, S. C.; Kim, S. H.; Lee, J. H. Appl. Phys. Lett. 2007, 90, 133503.
doi: 10.1063/1.2717015 |
(b) Kim, S. H.; Jang, J.; Jeon, H.; Yun, W. M.; Nam, S.; Park, C. E. Appl. Phys. Lett. 2008, 92, 183306.
doi: 10.1063/1.2924772 |
|
[28] |
Nakanotani, H.; Yahiro, M.; Adachi, C.; Yano, K. Appl. Phys. Lett. 2007, 90, 262104.
doi: 10.1063/1.2752023 |
[29] |
Sun, S.; Lan, L.; Li, Y.; Ning, H.; Yao, R.; Wang, L.; Peng, J. RSC Adv. 2017, 7, 5966.
doi: 10.1039/C6RA26817J |
[30] |
(a) Singh, T. B.; Senkarabacak, P.; Sariciftci, N. S.; Tanda, A.; Lackner, C.; Hagelauer, R.; Horowitz, G. Appl. Phys. Lett. 2006, 89, 033512.
doi: 10.1063/1.2235947 |
(b) An, M.-J.; Seo, H.-S.; Zhang, Y.; Oh, J.-D.; Choi, J.-H. Appl. Phys. Lett. 2010, 97, 023506.
doi: 10.1063/1.3460282 |
|
(c) Oh, J.-D.; Kim, J.-W.; Kim, D.-K.; Choi, J.-H. Org. Electron. 2016, 30, 131.
doi: 10.1016/j.orgel.2015.12.006 |
|
[31] |
He, X. X.; Chow, W.; Liu, F. C.; Tay, B.; Liu, Z. Small 2017, 13, 1602558.
doi: 10.1002/smll.v13.2 |
[32] |
Smith, J.; Bashir, A.; Adamopoulos, G.; Anthony, J. E.; Bradley, D. D. C.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D. Adv. Mater. 2010, 22, 3598.
doi: 10.1002/adma.201000195 |
[33] |
Li, M.; Wang, J.; Cai, X.; Liu, F.; Li, X.; Wang, L.; Liao, L.; Jiang, C. Adv. Electron. Mater. 2018, 4, 1800211.
doi: 10.1002/aelm.v4.9 |
[34] |
Zhou, Y.; Han, S.-T.; Zhou, L.; Yan, Y.; Huang, L.-B.; Huang, J.; Roy, V. A. L. J. Mater. Chem. C 2013, 1, 7073.
doi: 10.1039/c3tc31456a |
[35] |
Sun, S.; Li, Y.; Lan, L.; Xiao, P.; Chen, Z.; Lin, Z.; Chen, J.; Peng, J.; Cao, Y. Org. Electron. 2017, 43, 162.
doi: 10.1016/j.orgel.2017.01.029 |
[36] |
Wei, Z.; Xu, W.; Hu, W.; Zhu, D. J. Mater. Chem. 2008, 18, 2420.
doi: 10.1039/b803475c |
[37] |
Tang, Q.; Tong, Y.; Li, H.; Ji, Z.; Li, L.; Hu, W.; Liu, Y.; Zhu, D. Adv. Mater. 2008, 20, 1511.
doi: 10.1002/(ISSN)1521-4095 |
[38] |
Lu, C.; Wang, J.; Chang, H.-C.; Chiu, Y.-C.; Chen, H.-Y.; Wu, H.-C.; Higashihara, T.; Chen, W.-C. J. Mater. Chem. C 2014, 2, 7489.
doi: 10.1039/C4TC01267D |
[39] |
Zhang, X.; Mao, J.; Deng, W.; Xu, X.; Huang, L.; Zhang, X.; Lee, S.-T.; Jie, J. Adv. Mater. 2018, 30, 1800187.
doi: 10.1002/adma.v30.29 |
[40] |
Zhang, Y.; Liu, J.; Nguyen, T.-Q. ACS Appl. Mater. Inter. 2013, 5, 2347.
doi: 10.1021/am302833j |
[41] |
Szendrei, K.; Jarzab, D.; Chen, Z.; Facchetti, A.; Loi, M. A. J. Mater. Chem. 2010, 20, 1317.
doi: 10.1039/B919596C |
[42] |
Meijer, E. J.; de Leeuw, D. M.; Setayesh, S.; van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.
pmid: 14502272 |
[43] |
Rost, C.; Karg, S.; Riess, W.; Loi, M. A.; Murgia, M.; Muccini, M. Appl. Phys. Lett. 2004, 85, 1613.
doi: 10.1063/1.1785290 |
[44] |
(a) Tandy, K.; Dutta, G. K.; Zhang, Y.; Venkatramaiah, N.; Aljada, M.; Burn, P. L.; Meredith, P.; Namdas, E. B.; Patil, S. Org. Electron. 2012, 13, 1981.
doi: 10.1016/j.orgel.2012.05.046 |
(b) Lee, H.-S.; Lee, J. S.; Cho, S.; Kim, H.; Kwak, K.-W.; Yoon, Y.; Son, S. K.; Kim, H.; Ko, M. J.; Lee, D.-K.; Kim, J. Y.; Park, S.; Choi, D. H.; Oh, S. Y.; Cho, J. H.; Kim, B. J. Phys. Chem. C 2012, 116, 26204.
doi: 10.1021/jp309213h |
|
(c) Ribierre, J. C.; Ghosh, S.; Takaishi, K.; Muto, T.; Aoyama, T. J. Phys. D: Appl. Phys. 2011, 44, 205102.
doi: 10.1088/0022-3727/44/20/205102 |
|
[45] |
Horlet, M.; Kraus, M.; Brütting, W.; Opitz, A. Appl. Phys. Lett. 2011, 98, 233304.
doi: 10.1063/1.3598423 |
[46] |
(a) Schidleja, M.; Melzer, C.; Seggern, H. V. Appl. Phys. Lett. 2009, 94, 123307.
doi: 10.1063/1.3107268 |
(b) Wang, Y.; Liu, D.; Ikeda, S.; Kumashiro, R.; Nouch, R.; Xu, Y.; Shang, H.; Ma, Y.; Tanigaki, K. Appl. Phys. Lett. 2010, 97, 033305.
doi: 10.1063/1.3465659 |
|
(c) Schmechel, R.; Ahles, M.; Von Seggern, H. J. Appl. Phys. 2005, 98, 084511.
doi: 10.1063/1.2106009 |
|
(d) Opitz, A.; Horlet, M.; Kiwull, M.; Wagner, J.; Kraus, M.; Brütting, W. Org. Electron. 2012, 13, 1614.
doi: 10.1016/j.orgel.2012.04.032 |
|
[47] |
(a) Yoo, D.; Hasegawa, T.; Kohara, A.; Sugiyama, H.; Ashizawa, M.; Kawamoto, T.; Masunaga, H.; Hikima, T.; Ohta, N.; Uekusa, H.; Matsumoto, H.; Mori, T. Dyes Pigments 2020, 180, 108418.
doi: 10.1016/j.dyepig.2020.108418 |
(b) Opoku, H.; Bathula, C.; Mamo, M. D.; Shrestha, N. K.; Lee, T.; Noh, Y.-Y. Macromol. Res. 2019, 27, 90.
doi: 10.1007/s13233-019-7008-5 |
|
(c) Parka, S.; Leeb, B.; Baeb, B.; Chaib, J.; Leeb, S.; Kima, C. Synth. Met. 2019, 253, 40.
doi: 10.1016/j.synthmet.2019.05.001 |
|
[48] |
Long, D. X.; Noh, Y.-Y. J. Nanosci. Nanotechnol. 2017, 17, 5709.
doi: 10.1166/jnn.2017.14152 |
[49] |
Park, J.; Kim, M.; Yeom, S. W.; Ha, H. J.; Song, H.; Min Jhon, Y.; Kim, Y. H.; Ju, B. K. Nanotechnology 2016, 27, 225302.
doi: 10.1088/0957-4484/27/22/225302 |
[50] |
(a) Khim, D.; Baeg, K.-J.; Kim, J.; Yeo, J.-S.; Kang, M.; Amegadzea, P. S. K.; Kim, M.-G.; Cho, J.; Lee, J. H.; Kim, D.-Y.; Noh, Y.-Y. J. Mater. Chem. 2012, 22, 16979.
doi: 10.1039/c2jm32721j |
(b) Baeg, K. J.; Kim, J.; Khim, D.; Caironi, M.; Kim, D. Y.; You, I. K.; Quinn, J. R.; Facchetti, A.; Noh, Y. Y. ACS Appl. Mater. Interfaces 2011, 3, 3205.
doi: 10.1021/am200705j |
|
[51] |
(a) Xu, Y.; Baeg, K. J.; Park, W. T.; Cho, A.; Choi, E. Y.; Noh, Y. Y. ACS Appl. Mater. Inter. 2014, 6, 14493.
doi: 10.1021/am5037862 |
(b) Chen, H.; Guo, Y.; Mao, Z.; Yu, G.; Huang, J.; Zhao, Y.; Liu, Y. Chem. Mater. 2013, 25, 3589.
doi: 10.1021/cm401130n |
|
[52] |
Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z. J. Am. Chem. Soc. 2009, 131, 9396.
doi: 10.1021/ja9029957 |
[53] |
Baeg, K. J.; Khim, D.; Jung, S. W.; Kang, M.; You, I. K.; Kim, D. Y.; Facchetti, A.; Noh, Y. Y. Adv. Mater. 2012, 24, 5433.
doi: 10.1002/adma.v24.40 |
[54] |
Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nat. Mater. 2004, 3, 317.
pmid: 15064756 |
[55] |
Ji, Y.; Xiao, C.; Heintges, G. H. L.; Wu, Y.; Janssen, R. A. J.; Zhang, D.; Hu, W.; Wang, Z.; Li, W. J. Polym. Sci. Polym. Chem. 2016, 54, 34.
doi: 10.1002/pola.27898 |
[56] |
Yang, J.; Zhao, Z.; Geng, H.; Cheng, C.; Chen, J.; Sun, Y.; Shi, L.; Yi, Y.; Shuai, Z.; Guo, Y.; Wang, S.; Liu, Y. Adv. Mater. 2017, 29, 1702115.
doi: 10.1002/adma.201702115 |
[57] |
Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. Adv. Mater. 2013, 25, 6589.
doi: 10.1002/adma.201302278 |
[58] |
Kim, M.; Park, W.-T.; Park, S. A.; Park, C. W.; Ryu, S. U.; Lee, D. H.; Noh, Y.-Y.; Park, T. Adv. Funct. Mater. 2019, 29, 1805994.
doi: 10.1002/adfm.v29.10 |
[59] |
Di, C.; Liu, Y.; Yu, G.; Zhu, D. Acc. Chem. Res. 2009, 42, 1573.
doi: 10.1021/ar9000873 |
[60] |
(a) Nénon, S.; Kanehira, D.; Yoshimoto, N.; Fages, F.; Videlot-Ackermann, C. Synth. Met. 2011, 161, 1915.
doi: 10.1016/j.synthmet.2011.06.035 |
(b) Wang, S. D.; Kanai, K.; Ouchi, Y.; Seki, K. Org. Electron. 2006, 7, 457.
doi: 10.1016/j.orgel.2006.06.001 |
|
[61] |
(a) Zhao, G.; Cheng, X.-M.; Tian, H.-J.; Du, B.-Q.; Liang, X.-Y.; Wu, F. Acta Phys. Sin. 2012, 61, 218502.
doi: 10.7498/aps |
(b) Morita, T.; Singh, V.; Oku, S.; Nagamatsu, S.; Takashima, W.; Hayase, S.; Kaneto, K. Jpn. J. Appl. Phys. 2010, 49, 041601.
doi: 10.1143/JJAP.49.041601 |
|
(c) Sarkar, T.; Vinokur, J.; Shamieh, B.; Savikhin, V.; Toney, M. F.; Frey, G. L. Chem. Mater. 2019, 31, 7046.
doi: 10.1021/acs.chemmater.9b01787 |
|
[62] |
Lee, G.; Kim, M.-H.; Noh, S.-P.; Keum, C.-M.; Lee, S.-D. Mol. Cryst. Liq. Cryst. 2014, 597, 8.
doi: 10.1080/15421406.2014.931773 |
[63] |
Lin, H.-W.; Lee, W.-Y.; Chen, W.-C. J. Mater. Chem. 2012, 22, 2120.
|
[64] |
Lee, D. Y.; Tamilavan, V.; Shin, I.; Lee, J.; Jung, Y. K.; Jeong, J. H.; Cho, S.; Lee, B. R.; Park, S. H. Polym. J. 2020, 52, 581.
doi: 10.1038/s41428-020-0313-1 |
[1] | 周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂. 萘二酰亚胺手性衍生物的合成及其场效应晶体管性能研究[J]. 有机化学, 2021, 41(11): 4400-4408. |
[2] | 谭丹, 吴赛, 魏欢, 胡袁源, 陈华杰. 靛红并苊醌二甲酰亚胺类共轭分子的设计合成及性质研究[J]. 有机化学, 2020, 40(9): 2919-2928. |
[3] | 刘慧, 张小凤, 程敬招, 叶东鼐, 陈龙, 温和瑞, 刘诗咏. C—H键直接芳基化制备共轭功能材料及其器件应用[J]. 有机化学, 2020, 40(4): 831-855. |
[4] | 蔡金芳, 江华, 崔志华, 陈维国. 醌式杂环化合物的设计、合成及应用性能研究进展[J]. 有机化学, 2020, 40(2): 351-363. |
[5] | 彭培珍, 李晶, 侯斌, 辛涵申, 程探宇, 高希珂. 薁封端的引达省并二噻吩类衍生物的设计合成及性质研究[J]. 有机化学, 2020, 40(11): 3916-3924. |
[6] | 叶中华, 杨佳丽, 凌志天, 赵艺, 陈果, 郑燕琼, 魏斌, 施鹰. 含有吲哚并咔唑基团的热激发延迟荧光双极性主体材料的设计、合成及应用[J]. 有机化学, 2019, 39(2): 449-455. |
[7] | 梁龙, 刘丽娜, 陈学强, 项宣, 凌君, 鲁郑全, 李靖靖, 李维实. 苯并二噻吩/苯并噻二唑ADA型光电化合物:氟取代的影响[J]. 有机化学, 2019, 39(1): 157-169. |
[8] | 辛涵申, 葛从伍, 傅丽娜, 杨笑迪, 高希珂. 薁乙炔封端的萘二酰亚胺小分子的设计合成与场效应性能研究[J]. 有机化学, 2017, 37(3): 711-719. |
[9] | 陈华杰. 高迁移率聚合物半导体材料最新进展[J]. 有机化学, 2016, 36(3): 460-479. |
[10] | 夏昕, 雷霆, 裴坚, 刘晨江. 有机场效应晶体管中给体-受体共聚物材料研究进展[J]. 有机化学, 2014, 34(9): 1905-1915. |
[11] | 马锋, 王世荣, 郭俊杰, 李祥高. 有机薄膜晶体管半导体材料的研究进展[J]. 有机化学, 2012, (03): 497-510. |
[12] | 张志明,李国文,马於光,吴芳,田文晶,沈家骢. 用于电子传输材料的含噻吩环噁二唑衍生物的合成[J]. 有机化学, 2000, 20(4): 529-532. |
[13] | 杨燕生. 金属离子在王冠化合物载体液膜体系迁移研究的进展[J]. 有机化学, 1984, 4(1): 11-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||