有机化学 ›› 2022, Vol. 42 ›› Issue (1): 33-53.DOI: 10.6023/cjoc202107066 上一篇 下一篇
综述与进展
张瑶瑶a,*(), 周丽洁a,b, 韩彪a,b, 李维双a, 李博解a,*(), 朱磊a,b,c,*()
收稿日期:
2021-07-31
修回日期:
2021-09-11
发布日期:
2021-09-26
通讯作者:
张瑶瑶, 李博解, 朱磊
基金资助:
Yaoyao Zhanga(), Lijie Zhoua,b, Biao Hana,b, Weishuang Lia, Bojie Lia(), Lei Zhua,b,c()
Received:
2021-07-31
Revised:
2021-09-11
Published:
2021-09-26
Contact:
Yaoyao Zhang, Bojie Li, Lei Zhu
Supported by:
文章分享
壳聚糖是由甲壳素脱乙酰化而得, 是一种丰富可再生的生物质资源. 壳聚糖分子结构中含有大量的羟基、氨基, 与金属纳米粒子或金属离子具有较强的鳌合能力, 被广泛用作载体制备异相催化剂. 近年来, 壳聚糖负载铜催化剂被成功应用于各种不同类型的有机反应中, 不仅具有反应活性高、选择性好、易于分离回收等优点, 而且能够多次循环再利用, 在降低反应成本的同时, 也提升了实际的工业应用价值. 因此, 从不同类型壳聚糖负载铜催化剂的制备出发, 综述其催化的各种类型的有机反应, 主要涉及C—C键和C—X键的构建、点击化学及氧化还原反应等类型, 促进今后壳聚糖及其衍生物负载催化剂更加广泛的应用.
张瑶瑶, 周丽洁, 韩彪, 李维双, 李博解, 朱磊. 壳聚糖负载铜催化剂在有机反应中的应用研究进展[J]. 有机化学, 2022, 42(1): 33-53.
Yaoyao Zhang, Lijie Zhou, Biao Han, Weishuang Li, Bojie Li, Lei Zhu. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions[J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 33-53.
[1] |
Anamika, R. P.; Upasana, S. S.; Munira, M.; Chintan, B. J. Polym. Res. 2017, 24, 1.
doi: 10.1007/s10965-016-1163-6 |
[2] |
Munawar, A. M.; Jaweria, T. M. S.; Kishor, M. W.; Ellen, K. W. Pharmaceutics 2017, 9, 53.
doi: 10.3390/pharmaceutics9040053 |
[3] |
Mohammed, A. LWT-Food Sci. Technol. 2010, 43, 837.
doi: 10.1016/j.lwt.2010.01.021 |
[4] |
Prashanth, K. V. H.; Tharanathan, R. N. Trends Food Sci. Technol. 2007, 18, 117.
doi: 10.1016/j.tifs.2006.10.022 |
[5] |
Choi, C.; Nam, J. P.; Nah, J. W. J. Ind. Eng. Chem. 2016, 33, 1.
|
[6] |
Alicia, A.; Naimah, Z.; Ezeddine, H.; Brahim, H.; Fabien, B.; Damien, O.; Francois, C.; Florence, F.; Olivier, H. Molecules 2019, 24, 3009.
doi: 10.3390/molecules24163009 |
[7] |
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Int. J. Mol. Sci. 2020, 21, 487.
doi: 10.3390/ijms21020487 |
[8] |
Pakdel, P. M.; Peighambardoust, S. J. Carbohydr. Polym. 2018, 201, 264.
doi: 10.1016/j.carbpol.2018.08.070 |
[9] |
Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.
pmid: 15584695 |
[10] |
Mourya, V. K.; Inamdar, N. N. React. Funct. Polym. 2008, 68, 1013.
doi: 10.1016/j.reactfunctpolym.2008.03.002 |
[11] |
Jayakumar, R.; Prabaharan, M.; Reis, R. L.; Mano, J. F. Carbohydr. Polym. 2005, 62, 142.
doi: 10.1016/j.carbpol.2005.07.017 |
[12] |
Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L.; Li, P. Carbohydr. Res. 2007, 342, 1329.
doi: 10.1016/j.carres.2007.04.006 |
[13] |
Shepherd, R.; Reader, S.; Falshaw, A. Glycoconjugate J. 1997, 14, 535.
pmid: 9249156 |
[14] |
Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Int. J. Biol. Macromol. 2017, 105, 1636.
doi: 10.1016/j.ijbiomac.2017.02.008 |
[15] |
Huang, H.; Yuan, Q.; Yang, X. Colloids Surf., B 2004, 39, 31.
doi: 10.1016/j.colsurfb.2004.08.014 |
[16] |
Ahmed, T. A.; Aljaeid, B. M. Drug Des., Dev. Ther. 2016, 10, 483.
|
[17] |
Hussein, M. H. M.; El-Hady, M. F.; Sayed, W. M.; Hefni, H. Polym. Sci., Ser. A 2012, 54, 113.
doi: 10.1134/S0965545X12020046 |
[18] |
Pereira, F. S.; Lanfredi, S.; González, E. R. P.; Agostini, D. L. D. S.; Gomes, H. M.; Medeiros, R. S. J. Therm. Anal. Calorim. 2017, 129, 291.
doi: 10.1007/s10973-017-6146-2 |
[19] |
Hardy, J. J. E.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Green Chem. 2004, 6, 53.
doi: 10.1039/b312145n |
[20] |
Sahu, P. K.; Sahu, P. K.; Gupta, S. K.; Agarwal, D. D. Ind. Eng. Chem. Res. 2014, 53, 2085.
doi: 10.1021/ie402037d |
[21] |
Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
doi: 10.1039/c3gc40401c |
[22] |
Molnár, Á. Coord. Chem. Rev. 2019, 388, 126.
doi: 10.1016/j.ccr.2019.02.018 |
[23] |
Sakthivel, B.; Dhakshinamoorthy, A. J. Colloid Interface Sci. 2017, 485, 75.
doi: 10.1016/j.jcis.2016.09.020 |
[24] |
Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. Carbohydr. Polym. 2020, 235, 115966.
doi: 10.1016/j.carbpol.2020.115966 |
[25] |
Wang, S.; Zhou, H.; Song, S.; Wang, J. Chin. J. Org. Chem. 2015, 35, 85. (in Chinese)
doi: 10.6023/cjoc201406022 |
(王硕, 周宏勇, 宋沙沙, 王家喜, 有机化学, 2015, 35, 85.)
doi: 10.6023/cjoc201406022 |
|
[26] |
Tian, T.; Li, Z.; Li, C. Green Chem. 2021, 23, 6789.
doi: 10.1039/D1GC01871J |
[27] |
Ding, L.; Li, J.; Jiang, R.; Wang, L.; Song, W.; Zhu, L. Chin. J. Polym. Sci. 2019, 37, 1130.
doi: 10.1007/s10118-019-2263-7 |
[28] |
Sun, W.; Xia, C. G.; Wang, H. New J. Chem. 2002, 26, 755.
doi: 10.1039/b110791g |
[29] |
Zeng, M.; Sun, X.; Qi, C.; Zhang, X. Kinet. Catal. 2013, 54, 716.
doi: 10.1134/S0023158413060141 |
[30] |
Zhao, H.; Xu, J.; Wang, T. Appl. Catal., A 2015, 502, 188.
doi: 10.1016/j.apcata.2015.06.016 |
[31] |
Shen, C.; Xu, J.; Ying, B.; Zhang, P. ChemCatChem 2016, 8, 3560.
doi: 10.1002/cctc.201601068 |
[32] |
Zhu, L.; Wang, L.; Li, B.; Fu, B. Q.; Zhang, C. P.; Li, W. Chem. Commun. 2016, 52, 6371.
doi: 10.1039/C6CC01944G |
[33] |
Shen, J.; Xu, J.; Huang, L.; Zhu, Q.; Zhang, P. Adv. Synth. Catal. 2020, 362, 230.
doi: 10.1002/adsc.v362.1 |
[34] |
Yuan, J.; Liu, S.; Qu, L. Adv. Synth. Catal. 2017, 359, 4197.
doi: 10.1002/adsc.v359.23 |
[35] |
Ramesh, B.; Reddy, C. R.; Kumar, G. R. Reddy, B. V. S. Tetrahedron Lett. 2018, 59, 628.
doi: 10.1016/j.tetlet.2017.12.085 |
[36] |
Dekamin, M. G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Naimi-Jamal, M. R. Int. J. Biol. Macromol. 2016, 93, 767.
doi: S0141-8130(16)31512-4 pmid: 27608546 |
[37] |
Anuradha; Layek, S.; Agrahari, B.; Pathak, D. D. ChemistrySelect 2017, 2, 6865.
doi: 10.1002/slct.201701252 |
[38] |
Goncalves, F. J.; Kamal, F.; Gaucher, A.; Gil, R.; Bourdreux, F.; Martineau-Corcos, C.; Gurgel, L. V. A.; Gil, L. F.; Prim, D. Carbohydr. Polym. 2018, 181, 1206.
doi: 10.1016/j.carbpol.2017.12.012 |
[39] |
Kaur, P.; Kumar, B.; Kumar, V.; Kumar, R. Tetrahedron Lett. 2018, 59, 1986.
doi: 10.1016/j.tetlet.2018.03.053 |
[40] |
Liu, Q.; Xu, M.; Zhao, J.; Yang, Z.; Qi, C.; Zeng, M.; Xia, R.; Cao, X.; Wang, B. Int. J. Biol. Macromol. 2018, 113, 1308.
doi: S0141-8130(17)35169-3 pmid: 29550425 |
[41] |
Lo, J. C., Kim, D.; Pan, C.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
doi: 10.1021/jacs.6b13155 |
[42] |
Bodhak, C.; Kundu, A.; Pramanik, A. Tetrahedron Lett. 2015, 56, 419.
doi: 10.1016/j.tetlet.2014.11.120 |
[43] |
Anuradha; Kumari, S.; Pathak, D. Tetrahedron Lett. 2015, 56, 4135.
doi: 10.1016/j.tetlet.2015.05.049 |
[44] |
Yang, B.; Mao, Z.; Zhu, X.; Wan, Y. Catal. Commun. 2015, 60, 92.
doi: 10.1016/j.catcom.2014.11.014 |
[45] |
Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. New J. Chem. 2018, 42, 16013.
doi: 10.1039/C8NJ02677G |
[46] |
Narjes, M.; Nasrollahzadeh, M.; Asghar, T.-K.; Rajender, S. V.; Mohammadreza, S. Carbohydr. Polym. 2020, 232, 115819.
doi: 10.1016/j.carbpol.2019.115819 |
[47] |
Nasrollahzadeh, M.; Motahharifar, N.; Nezafat, Z.; Shokouhimehr, M. J. Mol. Liq. 2021, 341, 117398.
doi: 10.1016/j.molliq.2021.117398 |
[48] |
Shen, C.; Xu, J.; Yu, W.; Zhang, P. Green Chem. 2014, 16, 3007.
doi: 10.1039/C4GC00161C |
[49] |
Frindy, S.; Kadib, A.; Lahcini, M.; Primo, A.; García, H. ChemCatChem 2015, 7, 3307.
doi: 10.1002/cctc.v7.20 |
[50] |
Hajipour, A. R.; Hosseini, S. M.; Jajarmi, S. New J. Chem. 2017, 41, 7447.
doi: 10.1039/C7NJ00595D |
[51] |
Cheng, L.; Ge, X.; Liu, X.; Feng, Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese)
doi: 10.6023/cjoc202001030 |
(成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.)
doi: 10.6023/cjoc202001030 |
|
[52] |
Ying, B.; Xu, J.; Zhu, X.; Shen, C.; Zhang, P. ChemCatChem 2016, 8, 1.
doi: 10.1002/cctc.201501371 |
[53] |
Li, B.; Wang, L.; Qin, C.; Zhu, L. Catal. Commun. 2016, 86, 23.
doi: 10.1016/j.catcom.2016.08.002 |
[54] |
Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.; Wang, L.; Zhu, L. Nanomaterials 2018, 8, 326.
doi: 10.3390/nano8050326 |
[55] |
Zhou, L.; Han, B.; Zhang, Y.; Li, B.; Wang, L.; Wang, J.; Wang, X.; Zhu, L. Catal. Lett. 2021, 151, 3220.
doi: 10.1007/s10562-021-03571-2 |
[56] |
Zhu, L.; Li, B.; Wang, S.; Wang, W.; Wang, L.; Ding, L.; Qin, C. Polymers 2018, 10, 385.
doi: 10.3390/polym10040385 |
[57] |
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.
doi: 10.1002/(ISSN)1521-3757 |
[58] |
Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591.
doi: 10.1126/science.1233701 |
[59] |
Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 116, 4018.
doi: 10.1002/(ISSN)1521-3757 |
[60] |
Shen, J.; Xu, J.; He, L.; Ouyang, Y.; Huang, L.; Li, W.; Zhu, Q.; Zhang, P. Org. Lett. 2021, 23, 1204.
doi: 10.1021/acs.orglett.0c04148 |
[61] |
Shen, J.; Xu, J.; Zhu, Q.; Zhang, P. Org. Biomol. Chem. 2021, 19, 3119.
doi: 10.1039/D1OB00219H |
[62] |
Chen, L.; Zhang, Y.; Ding, G.; Ba, M.; Guo, Y.; Zou, Z Molecules 2013, 18, 1477.
doi: 10.3390/molecules18021477 pmid: 23353120 |
[63] |
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Angew. Chem., Int. Ed. 2009, 48, 5916.
doi: 10.1002/anie.v48:32 |
[64] |
Martina, K.; Leonhardt, S. E. S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. J. Mol. Catal. A: Chem. 2011, 334, 60.
doi: 10.1016/j.molcata.2010.10.024 |
[65] |
Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
doi: 10.1039/c3gc40401c |
[66] |
Jiang, Y.; Wang, Y.; Han, Q.; Zhu, R.; Xiong, X. Chin. J. Org. Chem. 2014, 34, 2068. (in Chinese)
doi: 10.6023/cjoc201404024 |
(江云兵, 王彦龙, 韩骞, 朱荣俊, 熊兴泉, 有机化学, 2014, 34, 2068.)
doi: 10.6023/cjoc201404024 |
|
[67] |
Chetia, M.; Ali, A. A.; Bhuyan, D.; Saikia, L.; Sarma, D. New J. Chem. 2015, 39, 5902.
doi: 10.1039/C5NJ00754B |
[68] |
Kumar, B. S. P. A.; Reddy, K. H. V.; Karnakar, K.; Satish, G.; Nageswar, Y. V. D. Tetrahedron Lett. 2015, 56, 1968.
doi: 10.1016/j.tetlet.2015.02.107 |
[69] |
Mahdavinia, G. R.; Soleymani, M.; Nikkhoo, M.; Farnia, S. M. F.; Amini, M. New J. Chem. 2017, 41, 3821.
doi: 10.1039/C6NJ03862J |
[70] |
Jennah, O.; Beniazza, R.; Lozach, C.; Jardel, D.; Molton, F.; Duboc, C.; Buffeteau, T.; Kadib, A. E.; Lastécouères, D.; Lahcini, M.; Vincent, J.-M. Adv. Synth. Catal. 2018, 360, 4615.
doi: 10.1002/adsc.201800964 |
[71] |
Zhang, Y.; Han, B.; Zhou, L.; Wang, M.; Li, B.; Wang, L.; Zhu, L. Acta Polym. Sin. 2021, 52, 723. (in Chinese)
|
(张瑶瑶, 韩彪, 周丽洁, 王明宇, 李博解, 汪连生, 朱磊, 高分子学报, 2021, 52, 723.)
|
|
[72] |
Antony, R.; David, S. T.; Karuppasamy, K.; Saravanan, K.; Thanikaikarasan, S.; Balakumar, S. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 284.
|
[73] |
Fakhri, A.; Naghipour, A. Mater. Technol. 2016, 31, 846.
doi: 10.1080/10667857.2016.1246233 |
[74] |
Fakhri, A; Naghipour, A. Environ. Prog. Sustainable Energy 2018, 37, 1626.
doi: 10.1002/ep.v37.5 |
[75] |
Souza, J. F.; Silva, G. T.; Fajardo, A. R. Carbohydr. Polym. 2017, 161, 187.
doi: 10.1016/j.carbpol.2017.01.018 |
[76] |
Ali, F.; Khan, S. B.; Kamal, T.; Alamry, K. A.; Bakhsh, E. M.; Asiri, A. M.; Sobahi, T. R. A. Carbohydr. Polym. 2018, 192, 217.
doi: 10.1016/j.carbpol.2018.03.029 |
[77] |
Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci. 2019, 480, 601.
doi: 10.1016/j.apsusc.2019.02.246 |
[1] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[2] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[3] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[4] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[5] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[6] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[7] | 李奇阳, 张海燕, 刘文博. 无过渡金属参与的碳硅键构筑方法研究进展[J]. 有机化学, 2023, 43(10): 3470-3490. |
[8] | 宇世伟, 陈兆华, 陈淇, 林舒婷, 何金萍, 陶冠燊, 汪朝阳. 硫代磺酸酯的合成与应用研究进展[J]. 有机化学, 2022, 42(8): 2322-2330. |
[9] | 顾清云, 程振凤, 曾小宝. 电化学氧化三氟甲基亚磺酸钠与α-羰基二硫缩烯酮的三氟甲基化反应[J]. 有机化学, 2022, 42(5): 1537-1544. |
[10] | 郑煜, 钱沈城, 徐鹏程, 郑斌南, 黄申林. 电化学氧化芳基端炔的硫氰化磺化反应[J]. 有机化学, 2022, 42(12): 4275-4281. |
[11] | 应安国, 白林盛, 侯海亮, 许松林, 鲁小彤, 王丽敏. AlCl3@MNPs催化硫杂Michael加成串联反应研究[J]. 有机化学, 2022, 42(11): 3843-3852. |
[12] | 李红霞, 陈棚, 伍智林, 陆雨函, 彭俊梅, 陈锦杨, 何卫民. 电化学促进的五元芳香杂环与硫氰酸铵氧化交叉脱氢偶联反应[J]. 有机化学, 2022, 42(10): 3398-3404. |
[13] | 蒙泽银, 冯承涛, 徐坤. 基于电化学方法构建碳-氮键的最新研究进展[J]. 有机化学, 2021, 41(7): 2535-2570. |
[14] | 赵志恒, 李鸣, 周娅琴, 何永辉, 张丽珠, 李干鹏, 谷利军. 电化学脱氢[3+2]环化反应合成取代的1,2,4-三氮唑衍生物[J]. 有机化学, 2021, 41(6): 2476-2484. |
[15] | 吴媚, 于玲, 侯慧青, 陈厚铮, 庄庆龙, 周孙英, 林小燕. 水相中电化学促进铜催化苯甲醇氧化合成喹唑啉酮[J]. 有机化学, 2021, 41(6): 2326-2334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||