有机化学 ›› 2022, Vol. 42 ›› Issue (6): 1667-1676.DOI: 10.6023/cjoc202201010 上一篇 下一篇
研究论文
黄志友a,*(), 李哲陟a, 何波b, 李文胜c, 杨平a, 陈立军a
收稿日期:
2022-01-10
修回日期:
2022-02-12
发布日期:
2022-03-21
通讯作者:
黄志友
基金资助:
Zhiyou Huanga(), Zhezhi Lia, Bo Heb, Wensheng Lic, Ping Yanga, Lijun Chena
Received:
2022-01-10
Revised:
2022-02-12
Published:
2022-03-21
Contact:
Zhiyou Huang
Supported by:
文章分享
为了高效、高收率地获得新型N-苯磺酰基苯乙酰胺脱落酸类似物, 取代苯乙炔和苯磺酰叠氮为起始原料, 水相中超声辐射下经廉价的CuSO4/NaAsc (NaAsc为抗坏血酸钠)催化获得32个目标化合物. 该方法操作简单、收率高(86%~95%)、溶剂环保. 种子萌发实验结果表明, 25和50 µmol/L目标化合物处理后大豆种子发芽明显受阻, 其中22个目标化合物处理后抑制率为100%, 活性优于脱落酸(ABA). 该结果有利于快速地合成具有高抑制萌发活性的新型脱落酸类似物
黄志友, 李哲陟, 何波, 李文胜, 杨平, 陈立军. 超声促进CuSO4/NaAsc水相中高效催化合成N-苯磺酰基苯乙酰胺及其抑制种子萌发的研究[J]. 有机化学, 2022, 42(6): 1667-1676.
Zhiyou Huang, Zhezhi Li, Bo He, Wensheng Li, Ping Yang, Lijun Chen. Efficient Ultrasound-Assisted Approach to N-Benzensulfonyl Phenylacetamide via CuSO4/NaAsc Catalysis in Water and Its Inhibition Activity of Seed Germination[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1667-1676.
Entry | Catalyst | Solvent | t/min | Yield/% |
---|---|---|---|---|
1 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | tBuOH∶H2O (V∶V=3∶1) | 60 | 63 |
2 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | tBuOH∶H2O (V∶V=2∶1) | 60 | 67 |
3 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | tBuOH∶H2O (V∶V=1∶2) | 60 | 71 |
4 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | H2O | 60 | 83 |
5 | CuSO4 (0.1 equiv.)/NaAsc (0.5 equiv.) | H2O | 60 | 83 |
6 | CuSO4 (0.1 equiv.)/NaAsc (0.4 equiv.) | H2O | 60 | 83 |
7 | CuSO4 (0.1 equiv.)/NaAsc (0.3 equiv.) | H2O | 60 | 78 |
8 | CuSO4 (0.1 equiv.)/NaAsc (0.1 equiv.) | H2O | 60 | 46 |
9 | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 60 | 83 |
10 | CuSO4 (0.02 equiv.)/NaAsc (0.4 equiv.) | H2O | 60 | 71 |
11b | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 95 |
12b | CuSO4•5H2O (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 95 |
13b | Cu(OAc)2•H2O (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 93 |
14b | Cu(OAc)2 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 93 |
15b | CuS (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | < 5 |
16b | CuI (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 45 |
17b | Cu(CF3SO3)2 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 91 |
18b,c | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 13 | 95 |
19b,d | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 6 | 95 |
Entry | Catalyst | Solvent | t/min | Yield/% |
---|---|---|---|---|
1 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | tBuOH∶H2O (V∶V=3∶1) | 60 | 63 |
2 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | tBuOH∶H2O (V∶V=2∶1) | 60 | 67 |
3 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | tBuOH∶H2O (V∶V=1∶2) | 60 | 71 |
4 | CuSO4 (0.1 equiv.)/NaAsc (1.0 equiv.) | H2O | 60 | 83 |
5 | CuSO4 (0.1 equiv.)/NaAsc (0.5 equiv.) | H2O | 60 | 83 |
6 | CuSO4 (0.1 equiv.)/NaAsc (0.4 equiv.) | H2O | 60 | 83 |
7 | CuSO4 (0.1 equiv.)/NaAsc (0.3 equiv.) | H2O | 60 | 78 |
8 | CuSO4 (0.1 equiv.)/NaAsc (0.1 equiv.) | H2O | 60 | 46 |
9 | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 60 | 83 |
10 | CuSO4 (0.02 equiv.)/NaAsc (0.4 equiv.) | H2O | 60 | 71 |
11b | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 95 |
12b | CuSO4•5H2O (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 95 |
13b | Cu(OAc)2•H2O (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 93 |
14b | Cu(OAc)2 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 93 |
15b | CuS (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | < 5 |
16b | CuI (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 45 |
17b | Cu(CF3SO3)2 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 20 | 91 |
18b,c | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 13 | 95 |
19b,d | CuSO4 (0.05 equiv.)/NaAsc (0.4 equiv.) | H2O | 6 | 95 |
Entry | R1 | R2 | 3 | Yield/% | Entry | R1 | R2 | 3 | Yield/% |
---|---|---|---|---|---|---|---|---|---|
1 | 4-CH3 | H | 3a | 95 | 16 | H | 4-CH3 | 3aa | 95 |
2 | 4-CH3 | 4-F | 3b | 90 | 17 | 4-OCH3 | 4-CH3 | 3ab | 93 |
3 | 4-CH3 | 4-Cl | 3c | 91 | 18 | 4-F | 4-CH3 | 3ac | 92 |
4 | 4-CH3 | 4-Br | 3d | 90 | 19 | 4-Cl | 4-CH3 | 3ad | 92 |
5 | 4-CH3 | 4-I | 3e | 89 | 20 | 4-Br | 4-CH3 | 3ae | 91 |
6 | 4-CH3 | 4-OCF3 | 3f | 90 | 21 | 4-OCF3 | 4-CH3 | 3af | 90 |
7 | 4-CH3 | 4-CN | 3g | 86 | 22 | 4-COOCH3 | 4-CH3 | 3ag | 88 |
8 | 4-CH3 | 2-OCH3 | 3h | 92 | 23 | 3-F | 4-CH3 | 3ah | 92 |
9 | 4-CH3 | 2-F | 3i | 88 | 24 | 3-Cl | 4-CH3 | 3ai | 91 |
10 | 4-CH3 | 2-Cl | 3j | 89 | 25 | 3-Br | 4-CH3 | 3aj | 92 |
11 | 4-CH3 | 2-Br | 3k | 90 | 26 | 3-NO2 | 4-CH3 | 3ak | 87 |
12 | 4-CH3 | 2,4-Cl2 | 3l | 90 | 27 | 2-CH3 | 4-CH3 | 3al | 90 |
13 | 4-CH3 | 2-Br-4-F | 3m | 87 | 28 | 2-F | 4-CH3 | 3am | 90 |
14 | 4-CH3 | 3-F-4-OCH3 | 3n | 91 | 29 | 2-Cl | 4-CH3 | 3an | 91 |
15 | | 3o | 88 | 30 | 2-Br | 4-CH3 | 3ao | 89 | |
31 | 2-CF3 | 4-CH3 | 3ap | 86 | |||||
32 | | 3aq | 87 |
Entry | R1 | R2 | 3 | Yield/% | Entry | R1 | R2 | 3 | Yield/% |
---|---|---|---|---|---|---|---|---|---|
1 | 4-CH3 | H | 3a | 95 | 16 | H | 4-CH3 | 3aa | 95 |
2 | 4-CH3 | 4-F | 3b | 90 | 17 | 4-OCH3 | 4-CH3 | 3ab | 93 |
3 | 4-CH3 | 4-Cl | 3c | 91 | 18 | 4-F | 4-CH3 | 3ac | 92 |
4 | 4-CH3 | 4-Br | 3d | 90 | 19 | 4-Cl | 4-CH3 | 3ad | 92 |
5 | 4-CH3 | 4-I | 3e | 89 | 20 | 4-Br | 4-CH3 | 3ae | 91 |
6 | 4-CH3 | 4-OCF3 | 3f | 90 | 21 | 4-OCF3 | 4-CH3 | 3af | 90 |
7 | 4-CH3 | 4-CN | 3g | 86 | 22 | 4-COOCH3 | 4-CH3 | 3ag | 88 |
8 | 4-CH3 | 2-OCH3 | 3h | 92 | 23 | 3-F | 4-CH3 | 3ah | 92 |
9 | 4-CH3 | 2-F | 3i | 88 | 24 | 3-Cl | 4-CH3 | 3ai | 91 |
10 | 4-CH3 | 2-Cl | 3j | 89 | 25 | 3-Br | 4-CH3 | 3aj | 92 |
11 | 4-CH3 | 2-Br | 3k | 90 | 26 | 3-NO2 | 4-CH3 | 3ak | 87 |
12 | 4-CH3 | 2,4-Cl2 | 3l | 90 | 27 | 2-CH3 | 4-CH3 | 3al | 90 |
13 | 4-CH3 | 2-Br-4-F | 3m | 87 | 28 | 2-F | 4-CH3 | 3am | 90 |
14 | 4-CH3 | 3-F-4-OCH3 | 3n | 91 | 29 | 2-Cl | 4-CH3 | 3an | 91 |
15 | | 3o | 88 | 30 | 2-Br | 4-CH3 | 3ao | 89 | |
31 | 2-CF3 | 4-CH3 | 3ap | 86 | |||||
32 | | 3aq | 87 |
Compd. | 50 μmol•L–1 | 25 μmol•L–1 | Compd. | 50 μmol•L–1 | 25 μmol•L–1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
发芽率/% | 抑制率/% | 发芽率/% | 抑制率/% | 发芽率/% | 抑制率/% | 发芽率/% | 抑制率/% | |||||
3a | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ac | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3b | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ad | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3c | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ae | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3d | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3af | 0.0±0.0 | 100.0±0.0 | 5.6±1.9 | 88.9±3.8 | |||
3e | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ag | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3f | 0.0±0.0 | 100.0±0.0 | 4.4±1.9 | 91.1±3.8 | 3ah | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3g | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ai | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3h | 0.0±0.0 | 100.0±0.0 | 12.2±3.8 | 75.6±7.7 | 3aj | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3i | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ak | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3j | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3al | 0.0±0.0 | 100.0±0.0 | 5.6±1.9 | 88.9±3.8 | |||
3k | 0.0±0.0 | 100.0±0.0 | 12.2±3.8 | 75.6±7.7 | 3am | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3l | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3an | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3m | 0.0±0.0 | 100.0±0.0 | 7.8±1.9 | 84.4±3.8 | 3ao | 0.0±0.0 | 100.0±0.0 | 8.9±1.9 | 82.2±3.8 | |||
3n | 0.0±0.0 | 100.0±0.0 | 5.6±1.9 | 88.9±3.8 | 3ap | 0.0±0.0 | 100.0±0.0 | 6.7±0.0 | 86.7±0.0 | |||
3o | 0.0±0.0 | 100.0±0.0 | 4.4±1.9 | 91.1±3.8 | 3aq | 0.0±0.0 | 100.0±0.0 | 6.7±0.0 | 86.7±0.0 | |||
3aa | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | ABA | 0.0±0.0 | 100.0±0.0 | 6.7±0.0 | 86.7±0.0 | |||
3ab | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | CK | 50.0±3.3 (0.5% DMSO) |
Compd. | 50 μmol•L–1 | 25 μmol•L–1 | Compd. | 50 μmol•L–1 | 25 μmol•L–1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
发芽率/% | 抑制率/% | 发芽率/% | 抑制率/% | 发芽率/% | 抑制率/% | 发芽率/% | 抑制率/% | |||||
3a | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ac | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3b | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ad | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3c | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ae | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3d | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3af | 0.0±0.0 | 100.0±0.0 | 5.6±1.9 | 88.9±3.8 | |||
3e | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ag | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3f | 0.0±0.0 | 100.0±0.0 | 4.4±1.9 | 91.1±3.8 | 3ah | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3g | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ai | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3h | 0.0±0.0 | 100.0±0.0 | 12.2±3.8 | 75.6±7.7 | 3aj | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3i | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3ak | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3j | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3al | 0.0±0.0 | 100.0±0.0 | 5.6±1.9 | 88.9±3.8 | |||
3k | 0.0±0.0 | 100.0±0.0 | 12.2±3.8 | 75.6±7.7 | 3am | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3l | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | 3an | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | |||
3m | 0.0±0.0 | 100.0±0.0 | 7.8±1.9 | 84.4±3.8 | 3ao | 0.0±0.0 | 100.0±0.0 | 8.9±1.9 | 82.2±3.8 | |||
3n | 0.0±0.0 | 100.0±0.0 | 5.6±1.9 | 88.9±3.8 | 3ap | 0.0±0.0 | 100.0±0.0 | 6.7±0.0 | 86.7±0.0 | |||
3o | 0.0±0.0 | 100.0±0.0 | 4.4±1.9 | 91.1±3.8 | 3aq | 0.0±0.0 | 100.0±0.0 | 6.7±0.0 | 86.7±0.0 | |||
3aa | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | ABA | 0.0±0.0 | 100.0±0.0 | 6.7±0.0 | 86.7±0.0 | |||
3ab | 0.0±0.0 | 100.0±0.0 | 0.0±0.0 | 100.0±0.0 | CK | 50.0±3.3 (0.5% DMSO) |
[1] |
Li, Z. X.; Takahashi, Y.; Scavo, A.; Brandt, B.; Nguyen, D.; Rieu, P.; Schroeder, J. I. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4522.
doi: 10.1073/pnas.1719659115 |
[2] |
Jurkiewicz, P.; Batoko, H. Plant Sci. 2018, 267, 48.
doi: S0168-9452(17)30560-5 pmid: 29362098 |
[3] |
Park, S. Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, 520, 545.
doi: 10.1038/nature14123 |
[4] |
Hampson, C. R.; Reaney, M. J. T.; Abrams, G. D.; Abrams, S. R.; Gusta, L. V. Phytochemistry. 1992, 31, 2645.
doi: 10.1016/0031-9422(92)83603-V |
[5] |
Verslues, P. E.; Zhu, J. New developments in abscisic acid perception and metabolism. Curr. Opin. Plant Biol. 2007, 10, 447.
pmid: 17875396 |
[6] |
Han, X. Q.; Xiao, Y. M.; Lu, H. Z.; Qian, Z. H. Chin. Bull. Botany. 2013, 48, 329. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00329 |
( 韩小强, 肖玉梅, 路慧哲, 覃兆海, 植物学报, 2013, 48, 329.)
doi: 10.3724/SP.J.1259.2013.00329 |
|
[7] |
Han, X. Q.; Wan, C.; Yang, D. Y.; Du, S. J.; Yuan, X. Y.; Xiao, Y. M.; Qin, Z. H. Chin. J. Org. Chem. 2014, 34, 1692. (in Chinese)
doi: 10.6023/cjoc201402034 |
( 韩小强, 万川, 杨冬燕, 杜士杰, 袁小勇, 肖玉梅, 覃兆海, 有机化学, 2014, 34, 1692.)
doi: 10.6023/cjoc201402034 |
|
[8] |
Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Science 2009, 324, 1064.
doi: 10.1126/science.1172408 |
[9] |
Park, S.; Fung, P.; Nishimura, N.; Jensen, D. R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T. F. Science 2009, 324, 1068.
|
[10] |
Cao, M.; Liu, X.; Zhang, Y.; Xue, X.; Zhou, X. E.; Melcher, K.; Gao, P.; Wang, F.; Zeng, L.; Zhao, Y. Cell Res. 2013, 23, 1043.
doi: 10.1038/cr.2013.95 |
[11] |
Okamoto, M.; Peterson, F. C.; Defries, A.; Park, S.; Endo, A.; Nambara, E.; Volkman, B. F.; Cutler, S. R. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12132.
doi: 10.1073/pnas.1305919110 |
[12] |
Duan, L. S.; Yu, C. X.; Liu, S. J.; Hu, T. L.; Zhou, Y. Y.; Li, Z. H. WO 2018086507, 2018.
|
[13] |
Che, C. L.; Hu, Y. M.; Ding, S. S.; Xiao, Y. M.; Li, J. Q.; Qin, Z. H. Chin. J. Org. Chem. 2019, 39, 419. (in Chinese)
doi: 10.6023/cjoc201807057 |
( 车传亮, 胡益敏, 丁珊珊, 肖玉梅, 李佳奇, 覃兆海, 有机化学, 2019, 39, 419.)
doi: 10.6023/cjoc201807057 |
|
[14] |
Yang, G. F.; Huang, Z. Y.; Hao, G. F. CN 107372504, 2016.
|
[15] |
Yang, G. F.; Huang, Z. Y.; Hao, G. F. CN 107382842, 2017.
|
[16] |
Huang, Z. Y.; Liu, M.; Mao, Y. J.; Chen, Y. D.; Wang, Y. P.; Liu, C. Tetrahedron Lett. 2019, 60, 626.
doi: 10.1016/j.tetlet.2019.01.041 |
[17] |
Zhao, T.; Meng, Q.; Sun, Z. S.; Chen, Y. Y.; Ai, W.; Zhao, Z.; Kang, D. W.; Dong, Y.; Liang, R. P.; Wu, T.; Pang, J. X.; Liu, X. Y.; Zhan, P. J. Med. Chem. 2020, 63, 10829.
doi: 10.1021/acs.jmedchem.0c00223 |
[18] |
Ammazzalorso, A.; De Filippis, B.; Giampietro, L.; Amoroso, R. Chem. Biol. Drug Des. 2017, 90, 1094.
doi: 10.1111/cbdd.13043 pmid: 28632928 |
[19] |
Kim, S. O.; Duffy, D. M. Biol. Reprod. 2016, 95.
|
[20] |
Asada, M.; Obitsu, T.; Kinoshita, A.; Nakai, Y.; Nagase, T.; Sugimoto, I.; Tanaka, M.; Takizawa, H.; Yoshikawa, K.; Sato, K.; Narita, M.; Ohuchida, S.; Nakai, H.; Toda, M. Bioorg. Med. Chem. Lett. 2010, 20, 2639.
doi: 10.1016/j.bmcl.2010.02.034 |
[21] |
Winum, J. Y.; Scozzafava, A.; Montero, J. L.; Supuran, C. T. Med. Res. Rev. 2006, 26, 767.
doi: 10.1002/med.20068 |
[22] |
Luo, Y.; Li, Y.; Qiu, K. M.; Lu, X.; Fu, J.; Zhu, H. L. Bioorg. Med. Chem. 2011, 19, 6069.
|
[23] |
Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2007, 48, 5181.
doi: 10.1016/j.tetlet.2007.05.158 |
[24] |
Shen, S.; Chai, Y.; Liu, Y.; Li, C.; Pan, Y. Org. Biomol. Chem. 2015, 13, 10205.
doi: 10.1039/C5OB01582K |
[25] |
Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046.
doi: 10.1021/ja056399e |
[26] |
Zhang, W. S.; Xu, W. J.; Kuang, C. X. Chin. J. Org. Chem. 2015, 35, 2059. (in Chinese)
doi: 10.6023/cjoc201505009 |
( 张文生, 许文静, 匡春香, 有机化学, 2015, 35, 2059.)
doi: 10.6023/cjoc201505009 |
|
[27] |
Mittersteiner, M.; Farias, F. F. S.; Bonacorso, H. G.; Martins, M. A. P.; Zanatta, N. Ultrason. Sonochem. 2021, 79.
|
[28] |
Zhang, Z. G.; Yan, X. Q.; Zhang, G. S.; Liu, Q. F.; Ma, N. N.; Liu, T. X.; Shi, L. Tetrahedron 2016, 72, 3077.
doi: 10.1016/j.tet.2016.04.031 |
[29] |
Yoo, E. J.; Park, S. H.; Lee, S. H.; Chang, S. Org. Lett. 2009, 11, 1155.
doi: 10.1021/ol900023t |
[30] |
Chandna, N.; Kaur, F.; Kumar, S.; Jain, N. Green Chem. 2017, 19, 4268.
doi: 10.1039/C7GC01593C |
[1] | 黄志友, 张宁, 左涵文, 曾旭祺, 刘涵. 喹啉-6-磺酰胺类化合物的设计、合成及其抑制大豆种子萌芽活性的研究[J]. 有机化学, 2022, 42(9): 2947-2953. |
[2] | 车传亮, 胡益敏, 丁珊珊, 肖玉梅, 李佳奇, 覃兆海. 新型Pyrabactin类似物的设计、合成及种子萌发抑制活性[J]. 有机化学, 2019, 39(2): 419-426. |
[3] | 林伟, 郑永祥, 黄志斌, 史达清. 超声辐射下2-硫代羰基-2H-噻喃和2-氨基-6-硫代羰基二氢吡啶衍生物的高效合成[J]. 有机化学, 2017, 37(2): 508-513. |
[4] | 张金, 程佩, 马养民, 刘佳, 苗智, 范超. 超声辐射法合成2-硫亚基喹唑啉-4(1H)-酮类化合物及其抗植物病原菌活性研究[J]. 有机化学, 2016, 36(6): 1368-1374. |
[5] | 阿布拉江·克依木, 王立举. 3-(2-萘基)-1-苯基-吡唑-4-甲醛腙衍生物的简便合成与表征[J]. 有机化学, 2012, 32(12): 2358-2362. |
[6] | 王慧彦, 邹毅, 陶传洲. 超声作用下四组分一锅法合成二氢吡喃并[2, 3-c]吡唑衍生物[J]. 有机化学, 2011, 31(12): 2161-2166. |
[7] | 赵三虎, 常慧芬, 李艳霞, 刘素平, 赵明根. 咪唑类离子液体催化的安息香缩合反应[J]. 有机化学, 2010, 30(06): 912-917. |
[8] | 张国平, 李品华. 超声辐射下醋酸钯催化Sonogashira偶联反应[J]. 有机化学, 2010, 30(01): 117-119. |
[9] | 黄丹, 钟康荣, 朱文峰, 高卫东. 辛酸蔗糖酯的超声合成、性能及应用[J]. 有机化学, 2009, 29(12): 1951-1955. |
[10] | 程青芳*,a,b ; 许兴友a,b; 王启发c ; 刘丽莎b; 刘望军b; 林 俏b ; 杨绪杰a . 超声辐射下水介质中一锅合成3-甲基-4-芳亚甲基-异噁唑-5(4H)-酮[J]. 有机化学, 2009, 29(08): 1267-1271. |
[11] | 程青芳*,a,b; 许兴友a,b ; 阮明杰a ; 温艳玲a; 何晓姜a; 杨绪杰b. 超声辐射下水介质中三组分一锅合成吡喃并[2,3-d]嘧啶衍生物[J]. 有机化学, 2009, 29(07): 1138-1141. |
[12] | 李学飞,薛思佳. 超声辐射下N-苄基-α,α-二苯基-2-吡咯烷甲醇衍生物的制备及其杀虫活性测定[J]. 有机化学, 2008, 28(06): 1079-1082. |
[13] | 李记太,李晓亮,刘献锋,马洁洁. 超声辐射和相转移催化下肟苄醚的合成[J]. 有机化学, 2008, 28(04): 628-631. |
[14] | 李记太,刘献锋,李晓亮. 超声辐射下水溶液中合成2,3-环氧-1,3-二芳基丙酮[J]. 有机化学, 2007, 27(11): 1428-1431. |
[15] | 曾鸿耀, 尹述凡,李颖. 无溶剂NH2SO3H催化下超声促进环酮与芳香醛的Aldol缩合[J]. 有机化学, 2007, 27(04): 528-531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||