有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3146-3166.DOI: 10.6023/cjoc202308001 上一篇 下一篇
综述与进展
收稿日期:
2023-08-01
修回日期:
2023-09-12
发布日期:
2023-09-21
基金资助:
Received:
2023-08-01
Revised:
2023-09-12
Published:
2023-09-21
Contact:
E-mail: Supported by:
文章分享
过渡金属催化不对称C—H硼化反应是构建手性有机硼化合物最为有效的策略之一, 具有原子和步骤经济性, 在合成化学、药物化学和材料学等领域受到广泛关注. 新型手性配体的设计与合成是过渡金属催化不对称C—H硼化反应成功的关键, 根据手性配体的设计和发展过程, 对近年来实现的过渡金属催化不对称C(sp2)—H和C(sp3)—H硼化反应的研究进展进行综述.
王文芳. 过渡金属催化不对称C—H硼化反应研究进展[J]. 有机化学, 2023, 43(9): 3146-3166.
Wenfang Wang. Recent Progress in Transition-Metal-Catalyzed Asymmetric C—H Borylation[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3146-3166.
Entry | R1, R2, R3 | Conv./% | ee(6')/% | ee(5')/% | sa |
---|---|---|---|---|---|
1 | CF3, CF3, H | 30 | 94 | 41 | 68 |
2 | CF3, CF3, 3-Me | 30 | 90 | 40 | 25 |
3 | OMe, OMe, H | 33 | 85 | 42 | 19 |
4 | OMe, CF3, 3-Cl | 50 | 88 | 88 | 45 |
5 | CF3, CF3, 4-Cl | 54 | 72 | 62 | 9 |
Entry | R1, R2, R3 | Conv./% | ee(6')/% | ee(5')/% | sa |
---|---|---|---|---|---|
1 | CF3, CF3, H | 30 | 94 | 41 | 68 |
2 | CF3, CF3, 3-Me | 30 | 90 | 40 | 25 |
3 | OMe, OMe, H | 33 | 85 | 42 | 19 |
4 | OMe, CF3, 3-Cl | 50 | 88 | 88 | 45 |
5 | CF3, CF3, 4-Cl | 54 | 72 | 62 | 9 |
Entry | B2pin2/equiv. | 10a∶I∶II∶IIIa | Yielda/% | eeb/% |
---|---|---|---|---|
1 | 1.00 | 87.6∶0.0∶9.9∶2.5 | 91 (83)c | 92 |
2 | 0.50 | 98.8∶0.0∶1.2∶0.0 | 65 | 87 |
3 | 0.75 | 96.2∶0.0∶3.1∶0.7 | 88 | 88 |
4 | 1.30 | 57.7∶0.0∶38.8∶3.5 | 53 (52)c | 96 |
Entry | B2pin2/equiv. | 10a∶I∶II∶IIIa | Yielda/% | eeb/% |
---|---|---|---|---|
1 | 1.00 | 87.6∶0.0∶9.9∶2.5 | 91 (83)c | 92 |
2 | 0.50 | 98.8∶0.0∶1.2∶0.0 | 65 | 87 |
3 | 0.75 | 96.2∶0.0∶3.1∶0.7 | 88 | 88 |
4 | 1.30 | 57.7∶0.0∶38.8∶3.5 | 53 (52)c | 96 |
[1] |
(a) Sun H.-Y.; Hall D. G. In Synthesis and Application of Organoboron Compounds, Eds.: Fernandez, E.; Whiting, A., Springer International, Cham, 2015, p. 221.
|
(b) Leonori D.; Aggarwal V. K. In Synthesis and Application of Organoboron Compounds, Eds.: Fernandez, E.; Whiting, A., Springer International, Cham, 2015, p. 271.
|
|
(c) Jakle F. In Synthesis and Application of Organoboron Compounds, Eds.: Fernandez, E.; Whiting, A., Springer International, Cham, 2015, p. 297.
|
|
(d) Wang M.; Shi Z. Chem. Rev. 2020, 120, 7348.
doi: 10.1021/acs.chemrev.9b00384 |
|
(e) Hall D. G. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials, Ed.: Hall, D. G., Wiley-VCH, Weinheim, 2011. p. 28.
|
|
(f) Cui P.-F.; Gao Y.; Guo S.-T.; Jin G.-X. Chin. J. Chem. 2021, 39, 281.
doi: 10.1002/cjoc.v39.2 |
|
(g) Wang Q.-T.; Meng W.; Feng X.-Q.; Du H.-F. Chin. J. Chem. 2021, 39, 918.
doi: 10.1002/cjoc.v39.4 |
|
[2] |
Xie T.; Chen L.-L.; Shen Z.-L; Xu S.-M. Angew. Chem., Int. Ed. 2023, 62, e202300199.
|
[3] |
Su B.; Zhou T.-G.; Xu P.-L.; Shi Z.-J.; Hartwig J. F. Angew. Chem., Int. Ed. 2017, 56, 7205.
|
[4] |
Shi Y.-J.; Gao Q.; Xu S.-M. J. Am. Chem. Soc. 2019, 141, 10599.
doi: 10.1021/jacs.9b04549 |
[5] |
Dick L. R.; Fleming P. E. Drug Discovery Today 2010, 15, 243.
doi: 10.1016/j.drudis.2010.01.008 |
[6] |
Adams J.; Kauffman M. Cancer Invest. 2004, 22, 304.
doi: 10.1081/CNV-120030218 |
[7] |
Gentile M.; Offidani M.; Vigna E.; Corvatta L.; Recchia A. G.; Morabito L.; Morabito F.; Gentili S. Expert Opin. Invest. Drugs 2015, 24, 1287.
doi: 10.1517/13543784.2015.1065250 |
[8] |
Gallerani E.; Zucchetti M.; Brunelli D.; Marangon E.; Noberasco C.; Hess D.; Delmonte A.; Martinelli G.; Bohm S.; Driessen C.; De Braud F.; Marsoni S.; Cereda R.; Sala F.; D'Incalci M.; Sessa C. Eur. J. Cancer 2013, 49, 290.
doi: 10.1016/j.ejca.2012.09.009 pmid: 23058787 |
[9] |
Roemmele R. C.; Christie M. A. Org. Process Res. Dev. 2013, 17, 422.
doi: 10.1021/op400010u |
[10] |
(a) Jin S.; Zhu C.; Li M.; Wang B. Bioorg. Med. Chem. Lett. 2009, 19, 1596.
doi: 10.1016/j.bmcl.2009.02.011 |
(b) Jin S.; Zhu C.; Cheng Y.; Li M.; Wang B. Bioorg. Med. Chem. 2010, 18, 1449.
doi: 10.1016/j.bmc.2010.01.017 |
|
[11] |
Andres P.; Ballano G.; Calaza M. I.; Cativiela C. Chem. Soc. Rev. 2016, 45, 2291.
doi: 10.1039/C5CS00886G |
[12] |
(a) Brown H. C.; Cole T. E. Organometallics 1983, 2, 1316.
doi: 10.1021/om50004a009 pmid: 17849483 |
(b) Burgess K.; Van der Donk W. A.; Westcott S. A.; Marder T. B.; Baker R. T.; Calabrese J. C. J. Am. Chem. Soc. 1992, 114, 9350.
doi: 10.1021/ja00050a015 pmid: 17849483 |
|
(c) Crudden C. M.; Edwards D. Eur. J. Org. Chem. 2003, 2003, 4695.
doi: 10.1002/ejoc.v2003:24 pmid: 17849483 |
|
(d) Burgess K.; Ohlmeyer M. J. Chem. Rev. 1991, 91, 1179.
doi: 10.1021/cr00006a003 pmid: 17849483 |
|
(e) Matteson D. S.; Sadhu K. M.; Lienhard G. E. J. Am. Chem. Soc. 1981, 103, 5241.
doi: 10.1021/ja00407a051 pmid: 17849483 |
|
(f) Matteson D. S. Chem. Rev. 1989, 89, 1535.
doi: 10.1021/cr00097a009 pmid: 17849483 |
|
(g) Mantri P.; Duffy D. E.; Kettner C. A. J. Org. Chem. 1996, 61, 5690.
doi: 10.1021/jo960628l pmid: 17849483 |
|
(h) Carmes L.; Carreaux F.; Carboni B.; Mortier J. Tetrahedron Lett. 1998, 39, 555.
doi: 10.1016/S0040-4039(97)10682-7 pmid: 17849483 |
|
(i) Lebarbier C.; Carreaux F.; Carboni B.; Boucher J. L. Bioorg. Med. Chem. Lett. 1998, 8, 2573.
pmid: 17849483 |
|
(j) Singh R. P.; Matteson D. S. J. Org. Chem. 2000, 65, 6650.
pmid: 17849483 |
|
(k) Jagannathan S.; Forsyth T. P.; Kettner C. A. J. Org. Chem. 2001, 66, 6375.
pmid: 17849483 |
|
(l) Matteson D. S. Med. Res. Rev. 2008, 28, 233.
pmid: 17849483 |
|
(m) Matteson D. S.; Maliakal D.; Fabry-Asztalos L. J. Organomet. Chem. 2008, 693, 2258.
doi: 10.1016/j.jorganchem.2008.03.031 pmid: 17849483 |
|
(n) Batsanov A. S.; Grosjean C.; Schutz T.; Whiting A. J. Org. Chem. 2007, 72, 6276.
pmid: 17849483 |
|
[13] |
(a) Wang Z.; Bachman S.; Dudnik A. S.; Fu G. C. Angew. Chem., Int. Ed. 2018, 57, 14529.
pmid: 19653692 |
(b) Cheng Q. Q.; Zhu S. F.; Zhang Y. Z.; Xie X. L.; Zhou Q. L. J. Am. Chem. Soc. 2013, 135, 14094.
doi: 10.1021/ja408306a pmid: 19653692 |
|
(c) Joannou M. V.; Moyer B. S.; Meek S. J. J. Am. Chem. Soc. 2015, 137, 6176.
doi: 10.1021/jacs.5b03477 pmid: 19653692 |
|
(d) Chen D.; Zhang X.; Qi W. Y.; Xu B.; Xu M.-H. J. Am. Chem. Soc. 2015, 137, 5268.
doi: 10.1021/jacs.5b00892 pmid: 19653692 |
|
(e) Zhan M.; Li R.-Z.; Mou Z. D.; Cao C.-G.; Liu J.; Chen Y.-W.; Niu D.-W. ACS Catal. 2016, 6, 3381.
doi: 10.1021/acscatal.6b00719 pmid: 19653692 |
|
(f) Potter B.; Szymaniak A. A.; Edelstein E. K.; Morken J. P. J. Am. Chem. Soc. 2014, 136, 17918.
doi: 10.1021/ja510266x pmid: 19653692 |
|
(g) Sun C.; Potter B.; Morken J. P. J. Am. Chem. Soc. 2014, 136, 6534.
doi: 10.1021/ja500029w pmid: 19653692 |
|
(h) Smilovic I. G.; Casas-Arce E.; Roseblade S. J.; Nettekoven U.; Zanotti-Gerosa A.; Kovacevic M.; Casar Z. Angew. Chem., Int. Ed. 2012, 51, 1014.
pmid: 19653692 |
|
(i) Chen I.-H.; Yin L.; Itano W.; Kanai M.; Shibasaki M. J. Am. Chem. Soc. 2009, 131, 11664.
doi: 10.1021/ja9045839 pmid: 19653692 |
|
(j) Sim H.-S.; Feng X.; Yun J. Chem.-Eur. J. 2009, 15, 1939.
doi: 10.1002/chem.v15:8 pmid: 19653692 |
|
(k) Kitanosono T.; Xu P.; Isshiki S.; Zhu L.; Kobayashi S. Chem. Commun. 2014, 50, 9336.
doi: 10.1039/C4CC04062G pmid: 19653692 |
|
(l) Lee J. E.; Yun J. Angew. Chem., Int. Ed. 2008, 47, 145.
pmid: 19653692 |
|
(m) Kitanosono T.; Kobayashi S. Asian J. Org. Chem. 2013, 2, 961.
doi: 10.1002/ajoc.v2.11 pmid: 19653692 |
|
(n) O'Brien, J. M.; Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630.
doi: 10.1021/ja104777u pmid: 19653692 |
|
[14] |
(a) Woźniak Ł.; Tan J. F.; Nguyen Q. H.; Madron du Vigné A.; Smal V.; Cao Y. X.; Cramer N. Chem. Rev. 2020, 120, 10516.
doi: 10.1021/acs.chemrev.0c00559 pmid: 32897713 |
(b) Zhao M.; Song P.-D.; Jiao J.; Li P.-F. Chin. J. Chem. 2020, 38, 665.
doi: 10.1002/cjoc.v38.6 pmid: 32897713 |
|
(c) Wang X.-Y.; Zhang P.-F.; Ye M.-C. Chin. J. Chem. 2020, 38, 1762.
doi: 10.1002/cjoc.v38.12 pmid: 32897713 |
|
(d) Wang W.-F.; Sun W. Chin. J. Org. Chem. 2023, 43, 1605. (in Chinese)
doi: 10.6023/cjoc202300023 pmid: 32897713 |
|
(王文芳, 孙伟, 有机化学, 2023, 43, 1605.)
doi: 10.6023/cjoc202300023 pmid: 32897713 |
|
[15] |
(a) Su B.; Hartwig J. F. Angew. Chem., Int. Ed. 2022, 61, e202113343.
doi: 10.1002/anie.v61.9 |
(b) Tamura H.; Yamazaki H.; Sato H.; Sakaki S. J. Am. Chem. Soc. 2003, 125, 16114.
doi: 10.1021/ja0302937 |
|
(c) Boller T. M.; Murphy J. M.; Hapke M.; Ishiyama T.; Miyaura N.; Hartwig J. F. J. Am. Chem. Soc. 2005, 127, 14263.
doi: 10.1021/ja053433g |
|
[16] |
Park D.; Baek D.; Lee C.-W.; Ryu H.; Park S.; Han W.; Hong S. Tetrahedron 2021, 79, 131811.
doi: 10.1016/j.tet.2020.131811 |
[17] |
Baek D.; Ryu H.; Ryu J. Y.; Lee J.; Stoltz B. M.; Hong S. Chem. Sci. 2020, 11, 4602.
doi: 10.1039/D0SC00412J |
[18] |
Wang G.-H.; Liu L.; Wang H.; Ding Y. S.; Zhou J.; Mao S.; Li P.-F. J. Am. Chem. Soc. 2017, 139, 91.
doi: 10.1021/jacs.6b11867 |
[19] |
Zou X.-L.; Zhao H.-N.; Li Y.-W.; Gao Q.; Ke Z.-F.; Xu S.-M. J. Am. Chem. Soc. 2019, 141, 5334.
doi: 10.1021/jacs.8b13756 |
[20] |
Lemouzy S.; Giordano L.; Hérault D.; Buono G. Eur. J. Org. Chem. 2020, 2020, 3351.
doi: 10.1002/ejoc.v2020.23 |
[21] |
Song S.-Y.; Li Y.-W.; Ke Z.-F.; Xu S.-M. ACS Catal. 2021, 11, 13445.
doi: 10.1021/acscatal.1c03888 |
[22] |
Jing K.; Chen L.-L.; Zhang P.; Xu S.-M. Chin. J. Chem. 2023, 41, 2119.
doi: 10.1002/cjoc.v41.17 |
[23] |
Song S.-Y.; Zhou X.-Y.; Ke Z.-F.; Xu S.-M. Angew. Chem., Int. Ed. 2023, 62, e202217130.
|
[24] |
(a) Kim B.; Chinn A. J.; Fandrick D. R.; Senanayake C. H.; Singer R. A.; Miller S. J. J. Am. Chem. Soc. 2016, 138, 7939.
doi: 10.1021/jacs.6b03444 |
(b) Metrano A. J.; Miller S. J. Acc. Chem. Res. 2019, 52, 199.
doi: 10.1021/acs.accounts.8b00473 |
|
[25] |
Genov G. R.; Douthwaite J. L.; Lahdenperä A. S. K.; Gibson D. C.; Phipps R. J. Science 2020, 367, 1246.
doi: 10.1126/science.aba1120 |
[26] |
Song P.-D.; Hu L.-L.; Yu T.; Jiao J.; He Y.-Q.; Xu L.; Li P.-F. ACS Catal. 2021, 11, 7339.
doi: 10.1021/acscatal.1c01671 |
[27] |
(a) Fu G. C. Acc. Chem. Res. 2006, 39, 853.
doi: 10.1021/ar068115g |
(b) Rios R.; Liang J.; Lo M. M. C.; Fu G. C. Chem. Commun. 2000, 377.
|
|
[28] |
Lötscher D.; Rupprecht S.; Stoeckli-Evans H.; von Zelewsky A. Tetrahedron: Asymmetry 2000, 11, 4341.
doi: 10.1016/S0957-4166(00)00401-8 |
[29] |
(a) Fu G. C. Acc. Chem. Res. 2004, 37, 542.
doi: 10.1021/ar030051b |
(b) Fu G. C. Acc. Chem. Res. 2000, 33, 412.
doi: 10.1021/ar990077w |
|
(c) Gomez Arrayas R.; Adrio J.; Carretero J. C. Angew. Chem., Int. Ed. 2006, 45, 7674.
doi: 10.1002/(ISSN)1521-3773 |
|
(d) Dai L.-X.; Tu T.; You S.-L.; Deng W.-P.; Hou X.-L. Acc. Chem. Res. 2003, 36, 659.
doi: 10.1021/ar020153m |
|
[30] |
Zou X.-L.; Li Y.-W.; Ke Z.-F.; Xu S.-M. ACS Catal. 2022, 12, 1830.
doi: 10.1021/acscatal.1c05299 |
[31] |
(a) Newton C. G.; Wang S. G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908.
doi: 10.1021/acs.chemrev.6b00692 |
(b) Saint-Denis T. G.; Zhu R.-Y.; Chen G.; Wu Q.-F.; Yu J.-Q. Science 2018, 359, eaao4798.
doi: 10.1126/science.aao4798 |
|
[32] |
(a) He J.; Jiang H.; Takise R.; Zhu R.-Y.; Chen G.; Dai H.-X.; Dhar T. G. M.; Shi J.; Zhang H.; Cheng P. T.; Yu J.-Q. Angew. Chem., Int. Ed. 2016, 55, 785.
|
(b) Zhang L.-S.; Chen G.-H.; Wang X.; Guo Q.-Y.; Zhang X.-S.; Pan F.; Chen K.; Shi Z.-J. Angew. Chem., Int. Ed. 2014, 53, 3899.
doi: 10.1002/anie.201310000 |
|
[33] |
He J.; Shao Q.; Wu Q.-F.; Yu J.-Q., J. J. Am. Chem. Soc. 2017, 139, 3344.
doi: 10.1021/jacs.6b13389 |
[34] |
Chen X.; Chen L.-L.; Zhao H.-L.; Gao Q.; Shen Z.-L.; Xu S.-M. Chin. J. Chem. 2020, 38, 1533.
doi: 10.1002/cjoc.v38.12 |
[35] |
Ebner C.; Carreira E. M. Chem. Rev. 2017, 117, 11651.
doi: 10.1021/acs.chemrev.6b00798 |
[36] |
(a) Gagnon A.; Duplessis M.; Fader L. Org. Prep. Proced. Int. 2010, 42, 1.
doi: 10.1080/00304940903507788 |
(b) Talele T. T. J. Med. Chem. 2016, 59, 8712.
doi: 10.1021/acs.jmedchem.6b00472 |
|
[37] |
Wu W.-Q.; Lin Z.-M.; Jiang H.-F. Org. Biomol. Chem. 2018, 16, 7315.
doi: 10.1039/C8OB01187G |
[38] |
Shi Y.-J.; Yang Y.-H.; Xu S.-M. Angew. Chem., Int. Ed. 2022, 61, e202201463.
|
[39] |
Gao Q.; Xu S.-M. Angew. Chem., Int. Ed. 2023, 62, e202218025.
doi: 10.1002/anie.v62.8 |
[40] |
Chen L.-L.; Yang Y.-H.; Liu L.-H.; Gao Q.; Xu S.-M. J. Am. Chem. Soc. 2020, 142, 12062.
doi: 10.1021/jacs.0c06756 |
[41] |
Giri R.; Shi B.-F.; Engle K. M.; Maugel N.; Yu J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
doi: 10.1039/b816707a |
[42] |
(a) Kang E.; Kim H. T.; Joo J. M. Org. Biomol. Chem. 2020, 18, 6192.
doi: 10.1039/D0OB01265C |
(b) Lee W.-G. C.; Shen Y.; Gutierrez D. A.; Li J. J. Org. Lett. 2016, 18, 2660.
doi: 10.1021/acs.orglett.6b01105 |
|
(c) Shen Y.; Lee W.-G. C.; Gutierrez D. A.; Li J. J. J. Org. Chem. 2017, 82, 11620.
doi: 10.1021/acs.joc.7b01883 |
|
(d) Yuan C.; Tu G.; Zhao Y. Org. Lett. 2017, 19, 356.
|
|
(e) Kim H.; Thombal R. S.; Khanal H. D.; Lee Y. R. Chem. Commun. 2019, 55, 13402.
doi: 10.1039/C9CC06758B |
|
[43] |
Kashima C.; Hibi S.; Maruyama T.; Harada K.; Omote Y. J. Heterocycl. Chem. 1987, 24, 637.
doi: 10.1002/jhet.v24:3 |
[44] |
Du R.-R.; Liu L.-H.; Xu S.-M. Angew. Chem., Int. Ed. 2021, 60, 5843.
doi: 10.1002/anie.v60.11 |
[45] |
Yang Y.-H.; Chen L.-L.; Xu S.-M. Angew. Chem., Int. Ed. 2021, 60, 3524.
doi: 10.1002/anie.v60.7 |
[46] |
Chen X.; Cheng Z.-Y.; Guo J.; Lu Z. Nat. Commun. 2018, 9, 3939.
doi: 10.1038/s41467-018-06240-y pmid: 30258070 |
[47] |
Zhang M.-H.; Ye Z.-Y.; Zhao W.-X. Angew. Chem., Int. Ed. 2023, 62, e202306248.
doi: 10.1002/anie.v62.31 |
[1] | 钟绪琴, 刘振. 含过渡金属和柔性配体催化体系的构象搜索[J]. 有机化学, 2023, 43(2): 734-741. |
[2] | 戴力, 徐迪, 毛翼斐, 朱嘉琦, 杨梦娇. 手性噁唑啉二茂铁化合物结构与合成方法[J]. 有机化学, 2022, 42(8): 2364-2375. |
[3] | 胡智雄, 孙冬冬, 韩勰, 刘思敏. 平面型d8和d10过渡金属配合物与葫芦[10]脲的识别研究[J]. 有机化学, 2020, 40(5): 1361-1366. |
[4] | 许双花, 陈俊, 陈加荣, 肖文精. 金鸡纳生物碱及其衍生物在不对称催化中的研究进展[J]. 有机化学, 2020, 40(11): 3493-3516. |
[5] | 房蕾, 林伟彬, 沈赟, 陈传峰. 螺烯及其衍生物在不对称催化中的应用[J]. 有机化学, 2018, 38(3): 541-554. |
[6] | 王敏灿. 对映选择性分析:在二乙基锌与苯甲醛不对称加成中手性配体设计的逻辑推理[J]. 有机化学, 2018, 38(1): 162-170. |
[7] | 秦晓飞, 刘晓燕, 郭彩红, 武海顺. 第VIII族过渡金属配合物催化羰基化合物硅氢化的反应机理[J]. 有机化学, 2016, 36(1): 60-71. |
[8] | 朱学友, 李小红, 韩凤娇, 张世晨, 赵海英, 边占喜. 二茂铁基β-二酮及其Cu(II)、Ni(II)配合物的燃速催化性质[J]. 有机化学, 2015, 35(4): 922-926. |
[9] | 傅颖, 侯博, 赵兴玲, 杜正银, 胡雨来. 醛酮的不对称硅氰化反应研究进展[J]. 有机化学, 2015, 35(12): 2507-2521. |
[10] | 郑龙生, 宋涛, 徐利文. 多手性中心联萘-2-芳甲羟基-2’-醇(Ar-BINMOLs):一类可应用于不对称催化反应的新型手性配体[J]. 有机化学, 2014, 34(7): 1255-1267. |
[11] | 宋沙沙, 周宏勇, 李小娜, 王丽华, 李云庆, 王家喜. 氨基葡萄糖衍生物配体在不对称合成中的应用进展[J]. 有机化学, 2014, 34(4): 706-716. |
[12] | 薛峰, 李长恭, 陈洁, 万伯顺. 亚砜及亚磺酰胺类配体催化不对称反应的新进展[J]. 有机化学, 2014, 34(2): 267-277. |
[13] | 王东, 侯传金, 陈丽凤, 刘小宁, 安庆大, 胡向平. 亚胺的不对称催化氢化研究进展[J]. 有机化学, 2013, 33(07): 1355-1368. |
[14] | 房华毅, 凌镇, 付雪峰. 过渡金属及主族元素配合物活化NH3中N—H键的研究进展[J]. 有机化学, 2013, 33(04): 738-748. |
[15] | 崔朋雷, 刘卉敏, 果秀敏, 张冬暖, 王彦恩, 王春. 糖基含磷配体在不对称氢化反应中的应用[J]. 有机化学, 2013, 33(03): 436-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||