有机化学 ›› 2025, Vol. 45 ›› Issue (4): 1223-1238.DOI: 10.6023/cjoc202407019 上一篇 下一篇
综述与进展
收稿日期:2024-07-08
修回日期:2024-08-15
发布日期:2024-09-30
基金资助:
Jing Lenga, Hao Huanga, Jie Xua, Huali Qinb(
)
Received:2024-07-08
Revised:2024-08-15
Published:2024-09-30
Contact:
* E-mail: Supported by:文章分享
硫氟交换点击化学作为一种新兴的合成技术, 自2014年提出以来迅速发展. 该技术基于磺酰氟基团, 实现了高效快速的磺酰基化合物合成. 磺酰氟化合物因其独特的亲电功能, 在有机合成、化学生物学、新药研发及新材料开发等领域展现出广泛的应用. 近年来, 硫氟交换点击化学不仅推动了高价硫氟类化合物的合成, 还成功应用于抗肿瘤、抗菌、抗氧化等多种药物研究, 显著提升了药物的生物活性. 作者基于小分子硫-氟砌块的设计与开发, 详细介绍了近年来磺酰氟类化合物的合成. 磺酰氟化合物作为关键中间体, 将在更多高科技领域发挥重要作用, 推动化学、材料科学及生物医学的持续发展.
冷静, 黄浩, 徐洁, 秦华利. 基于小分子硫-氟砌块的磺酰氟化合物的合成研究进展[J]. 有机化学, 2025, 45(4): 1223-1238.
Jing Leng, Hao Huang, Jie Xu, Huali Qin. Research Progress on the Synthesis of Sulfonyl Fluoride Compounds Based on Small Molecule Sulfur-Fluoride Building Blocks[J]. Chinese Journal of Organic Chemistry, 2025, 45(4): 1223-1238.
| [1] |
Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2014, 53, 9430.
|
| [2] |
Barrow, A. S.; Smedley, C. J.; Zheng, Q.; Li, S.; Dong, J.; Moses, J. E. Chem. Soc. Rev., 2019, 48, 4731.
doi: 10.1039/c8cs00960k pmid: 31364998 |
| [3] |
Fattah, T. A.; Saeed, A.; Albericio, F.; J. Fluorine Chem. 2018, 87, 213.
|
| [4] |
Zeng, D.; Deng, W.-P.; Jiang, X. Natl. Sci. Rev. 2023, 10, nwad123.
|
| [5] |
Smedley, C. J.; Homer, J. A.; Gialelis, T. L.; Barrow, A. S.; Koelln, R. A.; Moses, J. E. Angew. Chem. Int. Ed. 2022, 61, e202112375.
|
| [6] |
Lee, C.; Cook, A. J.; Elisabeth, J. E.; Friede, N. C.; Sammis, G. M.; Ball, N. D. ACS Catal. 2021, 11, 6578.
|
| [7] |
Narayanan, A.; Jones, L. H. Chem. Sci. 2015, 6, 2650.
doi: 10.1039/c5sc00408j pmid: 28706662 |
| [8] |
Jones, L. H.; Kelly, J. W. RSC Med. Chem. 2020, 11, 10.
doi: 10.1039/c9md00542k |
| [9] |
Wang, H.; Zhou, F.; Ren, G. Zheng, Q.; Chen, H.; Gao, B.; Klivansky, L.; Liu, Y.; Wu, B.; Xu, Q.; Lu, J.; Sharpless, K. B.; Wu, P. Angew. Chem. Int. Ed. 2017, 56, 11203.
doi: 10.1002/anie.201701160 pmid: 28792119 |
| [10] |
Dong, J.; Sharpless, K. B.; Kwisnek, L.; Oakdale, J. S.; Fokin, V. V. Angew. Chem. Int. Ed. 2014, 53, 9466.
|
| [11] |
Coenen, H. H.; Elsinga, P. H.; Iwata, R.; Kilbourn, M. R.; Pillai, M. R. A.; Rajan, M. G. R.; Wagner Jr., H. N.; Zaknun, J. J. Nucl. Med. Biol. 2010, 37, 727.
doi: 10.1016/j.nucmedbio.2010.04.185 pmid: 20870148 |
| [12] |
Saigal, N.; Bajwa, A. K.; Faheem, S. S.; Coleman, R. A.; Pandey, S. K.; Constantinescu, C. C.; Fong, V.; Mukherjee, J. Synapse 2013, 67, 596.
doi: 10.1002/syn.21665 pmid: 23504990 |
| [13] |
Kitson, S. L.; Cuccurullo, V.; Ciarmiello, A.; Salvo, D.; Mansi, L. Curr. Radiopharm. 2009, 2, 224.
|
| [14] |
Deng, X.; Zhu, X. ACS Omega 2023, 8, 37720.
|
| [15] |
Lin, L.; Pei, G.; Cao, Z.-Y.; Liao, S. Eur. J. Org. Chem. 2024, 27, e202400279.
|
| [16] |
Chinthakindi, P. K.; Arvidsson, P. I. Eur. J. Org. Chem. 2018, 3648.
|
| [17] |
Lou, T. S.-B.; Willis, M. C. Nat. Rev. Chem. 2022, 6, 146.
|
| [18] |
Zheng, Y.; Lu, W.; Ma, T.; Huang, S. Org. Chem. Front. 2024, 11, 217.
|
| [19] |
Bianchi, T. A.; Cate, L. A.; J. Org. Chem. 1977, 42, 2031.
|
| [20] |
Talko, A.; Barbasiewicz, M. ACS Sustainable Chem. Eng. 2018, 6, 6693.
|
| [21] |
Wright, S. W.; Hallstrom, K. N. J. Org. Chem. 2006, 71, 1080.
|
| [22] |
Xu, R.; Xu, T.; Yang, M.; Cao, T.; Liao, S. Nat. Commun. 2019, 10, 3752.
|
| [23] |
Laudadio, G.; Bartolomeu, A. A.; Verwijlen, L. M. H. M.; Cao, Y.; de Oliveira, K. T.; Noël, T. J. Am. Chem. Soc. 2019, 141, 11832.
|
| [24] |
Davies, A. T.; Curto, J. M.; Bagley, S. W.; Willis, M. C. Chem. Sci. 2017, 8, 1233.
doi: 10.1039/c6sc03924c pmid: 28451264 |
| [25] |
Tribby, A. L.; Rodríguez, I.; Shariffudin, S.; Ball, N. D. J. Org. Chem. 2017, 82, 2294.
|
| [26] |
Lou, T. S. B.; Bagley, S. W.; Willis, M. C. Angew. Chem. Int. Ed. 2019, 58, 18859.
|
| [27] |
Lo, P. K. T.; Chen, Y.; Willis, M. C. ACS Catal. 2019, 9, 10668.
|
| [28] |
Hedrick, R. M. US 2653973, 1953.
|
| [29] |
Krutak, J. J.; Burpitt, R. D.; Moore, W. H.; Hyatt, J. A. J. Org. Chem. 1979, 44, 3847.
|
| [30] |
Zheng, Q.; Dong, J.; Sharpless, K. B. J. Org. Chem. 2016, 81, 11360.
|
| [31] |
Chen, Q.; Mayer, P.; Mayr, H. Angew. Chem. Int. Ed. 2016, 55, 12664.
|
| [32] |
White, D. A.; Baizer, M. M. Tetrahedron Lett. 1973, 14, 3597.
|
| [33] |
Daeniker, H. U. Druey, J. Helv. Chim. Acta. 1962, 45, 1972.
|
| [34] |
Skalenko, Y. A.; Druzhenko, T. V.; Denisenko, A. V.; Samoilenko, M. V.; Dacenko, O. P.; Trofymchuk, S. A.; Grygorenko, O. O.; Tolmachev, A. A.; Mykhailiuk, P. K. J. Org. Chem. 2018, 83, 6275.
doi: 10.1021/acs.joc.8b00077 pmid: 29528633 |
| [35] |
Qin, H. L.; Zheng, Q.; Bare, G. A. L.; Wu, P.; Sharpless, K. B. Angew. Chem. Int. Ed. 2016, 55, 14155.
|
| [36] |
Chinthakindi, P. K.; Govender, K. B.; Kumar, A. S.; Kruger, H. G.; Govender, T.; Naicker, T.; Arvidsson, P. I. Org. Lett. 2017, 19, 480.
doi: 10.1021/acs.orglett.6b03634 pmid: 28075600 |
| [37] |
Zha, G. F.; Zheng, Q.; Leng, J.; Wu, P.; Qin, H.-L.; Sharpless, K. B. Angew. Chem. Int. Ed. 2017, 56, 4849.
|
| [38] |
Zha, G. F.; Bare, G. A. L.; Leng, J.; Shang, Z.-P.; Luo, Z.; Qin, H.-L. Adv. Synth. Catal. 2017, 359, 3237.
|
| [39] |
Wang, S. M.; Li, C.; Leng, J.; Bukhari, S. N. A.; Qin, H.-L. Org. Chem. Front. 2018, 5, 1411.
|
| [40] |
Wang, S. M.; Moku, B.; Leng, J.; Qin, H.-L. Eur. J. Org. Chem. 2018, 4407.
|
| [41] |
Li, C.; Wang, S. M.; Qin, H.-L. Org. Lett. 2018, 20, 4699.
|
| [42] |
Ncube, G.; Huestis, M. P. Organometallics, 2018, 38, 76.
|
| [43] |
Lee, P. S.; Yoshikai, N. Angew. Chem. Int. Ed. 2013, 52, 1240.
|
| [44] |
Tredwell, M. J.; Gulias, M.; Bremeyer, N. G.; Johansson, C. C. C.; Collins, B. S. L.; Gaunt, M. J. Angew. Chem. Int. Ed. 2011, 50, 1076.
doi: 10.1002/anie.201005990 pmid: 21268198 |
| [45] |
Liu, M.; Li, C. J. Angew. Chem. Int. Ed. 2016, 55, 10806.
|
| [46] |
Murphy, S. K.; Park, J. W.; Cruz, F. A.; Dong, V. M. Science 2015, 347, 56.
|
| [47] |
von Delius, M.; Le, C. M.; Dong, V. M. J. Am. Chem. Soc. 2012, 134, 15022.
doi: 10.1021/ja305593y pmid: 22938187 |
| [48] |
Chaplin, A. B.; Hooper, J. F.; Weller, A. S.; Willis, M. C. J. Am. Chem. Soc. 2012, 134, 4885.
doi: 10.1021/ja211649a pmid: 22324763 |
| [49] |
Zhang, T.; Wu, L.; Li, X. Org. Lett. 2013, 15, 6294.
doi: 10.1021/ol403178a pmid: 24279350 |
| [50] |
Liu, X.; Wang, Z.; Chen, Q.; He, M.-Y.; Wang, L. Appl. Organomet. Chem. 2018, 32, e4039.
|
| [51] |
Chen, X. Y.; Wu, Y.; Zhou, J.; Wang, P.; Yu, J.-Q. Org. Lett. 2019, 21, 1426.
|
| [52] |
Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489.
|
| [53] |
Leng, J.; Qin, H.-L. Chem. Commun. 2018, 54, 4477.
|
| [54] |
Leng, J.; Alharbi, N, S.; Qin, H.-L. Eur. J. Org. Chem. 2019, 6101.
|
| [55] |
Smedley, C. J.; Giel, M. C.; Molino, A.; Barrow, A. S.; Wilson, D. J. D.; Moses, J. E. Chem. Commun. 2018, 54, 6020.
|
| [56] |
Thomas, J.; Fokin, V. V. Org. Lett. 2018, 20, 3749.
doi: 10.1021/acs.orglett.8b01309 pmid: 29906123 |
| [57] |
Wu, W.-Q.; Qin, H.-L. J. Org. Chem. 2023, 88, 3266.
|
| [58] |
Xiong, H.; Wu, J.; Qin, H.-L. Org. Chem. Front. 2023, 10, 342.
|
| [59] |
Zhang, X.; Moku, B.; Leng, J.; Rakesh, K. P.; Qin, H.-L. Eur. J. Org. Chem. 2019, 1763.
|
| [60] |
Leng, J.; Tang, W.; Fang, W.-Y.; Zhao, C.; Qin, H.-L. Org. Lett. 2020, 22, 4316.
|
| [61] |
Leng, J.; Xu, J.; Li, Y.; Wang, S.-M.; Qin, H.-L. RSC Adv. 2024, 14, 7601.
|
| [62] |
Smedley, C. J.; Li, G.; Barrow, A. S.; Gialelis, T. L.; Giel, M.-C.; Ottonello, A.; Cheng, Y.; Kitamura, S.; Wolan, D. W.; Sharpless, K. B.; Moses, J. E. Angew. Chem. Int. Ed. 2020, 59, 12460.
|
| [63] |
Frye, N. L.; Daniliuc, C. G.; Studer, A. Angew. Chem. Int. Ed. 2022, 61, e202115593.
|
| [64] |
Li, C.; Zheng, Y.; Rakesh, K. P.; Qin, H.-L. Chem. Commun. 2020, 56, 8075.
|
| [65] |
Derrick, M. R.; Burgess, H. D.; Baker, M. T.; Binnie, N. E. J. Am. Inst. Conserv. 1990, 29, 77.
|
| [66] |
Andersen, M. P. S.; Blakem, D. R.; Rowland, F. S.; Hurley, M. D.; Wallington, T. J. Environ. Sci. Technol. 2009, 43, 1067.
|
| [67] |
Cady, G. E.; Misra, S. Inorg. Chem. 1974, 13, 837.
|
| [68] |
Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. Eur. J. 2016, 22, 5692.
|
| [69] |
Leng, J.; Qin, H.-L. Org. Biomol. Chem. 2019, 17, 5001.
|
| [70] |
Fang, W.-Y.; Zha, G.; Zhao, C.; Qin, H.-L. Chem. Commun. 2019, 55, 6273.
|
| [71] |
Edwards, D. R.; Wolfenden, R. J. Org. Chem. 2012, 77, 4450.
doi: 10.1021/jo300386u pmid: 22486328 |
| [72] |
Kwon, J.; Kim, B. M. Org. Lett. 2018, 21, 428.
|
| [73] |
Lee, C.; Ball, N. D.; Sammis, G. M. Chem. Commun. 2019, 55, 14753.
|
| [74] |
Guo, T.; Meng, G.; Zhan, X.; Yang, Q.; Ma, T.; Xu, L.; Sharpless, K. B.; Dong, J. Angew. Chem. Int. Ed. 2018, 57, 2605.
|
| [75] |
Wang, P.; Lin, L.; Huang, Y.; Zhang, H.; Liao, S. Angew. Chem. Int. Ed. 2024, e202405944.
|
| [76] |
Smedley, C. J.; Giel, M.-C.; Fallon, T.; Moses, J. E. Angew. Chem. Int. Ed. 2023, 62, e202303916.
|
| [77] |
Liu, M.; Tang, W.; Qin, H.-L. J. Org. Chem. 2023, 88, 1909.
|
| [78] |
Nie, X.; Xu, T.; Hong, Y.; Zhang, H.; Mao, C.; Liao, S. Angew. Chem. Int. Ed. 2021, 60, 22035.
|
| [79] |
Zhang, X.; Qin, H.-L. Org. Lett. 2022, 24, 9311.
doi: 10.1021/acs.orglett.2c03936 pmid: 36475782 |
| [80] |
Chen, L.-Y.; Rakesh, K. P.; Qin, H.-L. Org. Chem. Front. 2023, 10, 95.
|
| [81] |
Yin, C.-L.; Qin, R. Z.; Qin, H.-L. J. Org. Chem. 2024, 89, 3618.
|
| [82] |
Nie, X.; Xu, T.; Song, J.; Devaraj, A.; Zhang, B.; Chen, Y.; Liao, S. Angew. Chem. Int. Ed. 2021, 60, 3956.
|
| [83] |
Chen, D.; Nie, X.; Feng, Q.; Zhang, Y.; Wang, Y.; Wang, Q.; Huang, L.; Huang, S.; Liao, S. Angew. Chem. Int. Ed. 2021, 60, 27271.
|
| [84] |
Sun, S.; Gao, B.; Chen, J.; Sharpless, K. B.; Dong, J. Angew. Chem. Int. Ed. 2021, 60, 21195.
|
| [85] |
Appel, R.; Montenarh, M.; Chem. Ber. 1977, 110, 2368.
|
| [86] |
Wang, S.-C.; Zhou, X.; Li, Y.-X.; Zhang, C.-Y.; Zhang, Z.-Y.; Xiong, Y.-S.; Lu, G.; Dong, J.; Weng, J.; Angew. Chem. Int. Ed. 2024, e202410699.
|
| [87] |
Wang, P.; Zhang, H.; Zhao, M.; Ji, S.; Lin, L.; Yang, N.; Nie, X.; Song, J.; Liao, S. Angew. Chem. Int. Ed. 2022, 61, e202207684.
|
| [88] |
Yang, N.; Mao, C.; Zhang, H.; Wang, P.; Li, S.; Xie, L.; Liao, S. Org. Lett. 2023, 25, 4478.
doi: 10.1021/acs.orglett.3c01491 pmid: 37306334 |
| [89] |
Tryniszewski, M.; Basiak, D.; Barbasiewicz, M. Org. Lett. 2022, 24, 4270.
doi: 10.1021/acs.orglett.2c01604 pmid: 35653711 |
| [90] |
Fang, W.-Y.; Wang, S.-M.; Zhang, Z.-W.; Qin, H.-L. Org. Lett. 2020, 22, 8904.
doi: 10.1021/acs.orglett.0c03298 pmid: 33164523 |
| [91] |
Zhou, H.; Mukherjee, P.; Liu, R.; Evrard, E.; Wang, D.; Humphrey, J. M.; Butler, T. W.; Hoth, Sperry, J. B.; Sakata, S. K.; Helal, C. J.; am Ende, C. W. Org. Lett. 2018, 20, 812.
doi: 10.1021/acs.orglett.7b03950 pmid: 29327935 |
| [1] | 韩哲, 崔银, 丁成荣, 杨建, 张国富. “SO2F”源直接构建磺酰氟官能团的合成应用研究进展[J]. 有机化学, 2025, 45(7): 2245-2264. |
| [2] | 张放, 谢佩, 张启超, 武磊芳, 何林, 杜广芬. Brønsted碱促进的o-羟基席夫碱与乙烯基磺酰氟通过Michael-Mannich-SuFEx串联反应构建磺基色烯并[4,3‑b]吡咯烷化合物[J]. 有机化学, 2025, 45(7): 2552-2565. |
| [3] | 赵佳, 甘秋云, 袁耀锋. 自由基磺酰氟化反应研究进展[J]. 有机化学, 2025, 45(4): 1206-1222. |
| [4] | 唐德林, 罗锦昀, 杜广芬, 蔡志华, 何林. Brønsted碱促进的β-(2-羟基芳基)乙烯磺酰氟与β,γ-不饱和酮酯(炔酮)串联环化反应合成多取代4H-色烯[J]. 有机化学, 2024, 44(11): 3365-3374. |
| [5] | 张豪, 赵庆彬, 阮忠睿, 刘振兴. 硅醚与硫(VI)氟化合物SuFEx点击反应进展[J]. 有机化学, 2023, 43(10): 3569-3579. |
| [6] | 黄强, 邓婷婷, 朱佳运, 李军, 黎飞飞. Ag-Cu负载的胺基石墨烯催化β-羟基-1,2,3-三唑绿色合成研究[J]. 有机化学, 2022, 42(2): 534-542. |
| [7] | 严兆华, 王彦梅, 金红爱, 艾城美, 田伟生. 全氟烷基磺酰氟活化羧酸和1,3-二羰基化合物之间一步O-酰基化反应[J]. 有机化学, 2019, 39(7): 2042-2047. |
| [8] | 王龙文, 马济美, 程鑫, 李子龙, 孙林皓, 曾贞, 江洪. 基于酶触发的点击化学反应测定β-葡萄糖苷酶活性[J]. 有机化学, 2018, 38(10): 2775-2779. |
| [9] | 严兆华, 金红爱, 余信权, 王汪阳, 田伟生. 全氟烷基磺酰氟应用于1,3-二羰基化合物和苄醇衍生物之间一步C-或O-苄基化反应[J]. 有机化学, 2017, 37(1): 196-202. |
| [10] | 侯淑华, 曲忠国, 钟克利, 边延江, 汤立军. 一种苯并噻唑-罗丹明衍生物的合成及其对Fe3+、Al3+、Cr3+的识别[J]. 有机化学, 2016, 36(4): 768-773. |
| [11] | 韩骞, 易超, 熊兴泉. 氧化腈无铜点击反应构建氮氧杂环的研究进展[J]. 有机化学, 2014, 34(6): 1092-1103. |
| [12] | 赵志刚, 王晓红, 石治川, 程玉宇. 通过点击化学方法合成鹅去氧胆酸类分子钳及其识别性能研究[J]. 有机化学, 2014, 34(6): 1110-1117. |
| [13] | 王盟盟, 段迎超, 叶先炜, 任景丽, 余斌, 张恩, 刘宏民. 新型1,4-双哌嗪二硫代甲酸[1-取代(1,2,3-三唑)-4]-甲酯类化合物的设计、合成和抗肿瘤活性研究[J]. 有机化学, 2013, 33(11): 2384-2390. |
| [14] | 李炳臻, 李义和. 基于点击化学合成含有全氟环丁基芳基醚的ABA三嵌段共聚物[J]. 有机化学, 2013, 33(10): 2148-2154. |
| [15] | 熊兴泉, 陈会新. Diels-Alder环加成点击反应[J]. 有机化学, 2013, 33(07): 1437-1450. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||