有机化学 ›› 2025, Vol. 45 ›› Issue (10): 3873-3884.DOI: 10.6023/cjoc202502009 上一篇    下一篇

研究论文

乙醇胺电氧化合成甘氨酸的研究

李颖a, 胡硕真a, 方卫b, 肖星b, 张新胜a,*()   

  1. a 华东理工大学化工学院 上海 200237
    b 广西田园生化股份有限公司 南宁 530007
  • 收稿日期:2025-02-10 修回日期:2025-04-14 发布日期:2025-05-06

Study on Synthesis of Glycine by Electrooxidation of Ethanolamine

Ying Lia, Shuozhen Hua, Wei Fangb, Xing Xiaob, Xinsheng Zhanga,*()   

  1. a School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237
    b Guangxi Tianyuan Biochemical Co., Nanning 530007
  • Received:2025-02-10 Revised:2025-04-14 Published:2025-05-06
  • Contact: xszhang@ecust.edu.cn

本研究旨在通过电化学方法氧化乙醇胺(MEA)合成甘氨酸(Gly). 对电解槽结构对反应效果的影响进行了研究, 发现无隔膜电解槽在提高Gly收率、Gly选择性、MEA转化率和电流效率等方面的效果优于隔膜电解槽. 通过一系列实验设计, 发现无隔膜电解槽电解效果高于隔膜电解槽的主要原因为阴极Pb发生了部分Pb(Ⅱ)溶出现象. 溶出的Pb(Ⅱ)迁移至阳极, 在阳极表面氧化生成PbO2并附着于阳极表面, PbO2与Pt协同催化氧化乙醇胺提高了甘氨酸的收率. 借助电化学原位红外光谱研究揭示了C—OH在Pt-PbO2电极表面具有较强吸附, 且Pt-PbO2可促进乙醇胺中的C—OH电氧化为C=O和COOH. 最后通过优化电解质种类和浓度、乙醇胺浓度等条件, 以90.54%的高收率获得甘氨酸, 甘氨酸选择性和乙醇胺转化率均超过90%. 重复性实验证明该电解法具有较好的重复性. 通过调节溶液pH、过滤、减压蒸馏、洗涤、干燥一系列操作得到Gly固体, Gly分离效率为88%.

关键词: 乙醇胺电氧化, 甘氨酸, 电解槽结构筛选, 电氧化机理, 电解条件优化

The aim of this study was to synthesize glycine (Gly) by electrooxidation of ethanolamine (MEA). The influence of electrolyzer structure on the reaction was studied. Comparing the results of membrane-free and membrane electrolyzers revealed that the membrane-free electrolyzer performed better Gly yield, Gly selectivity, MEA conversion, and current efficiency. Through a series of experiments, it was found that the main reason for the higher performance of membrane-free electrolyzer was the occurrence of dissolving part of Pb(II) species from the cathode Pb surface. The dissolved Pb(II) migrated to the anode, oxidized and attached on the surface of the anode to generate PbO2, The synergistic effect of PbO2 and Pt promoted the oxidation of MEA and the yield of glycine. Electrochemical in-situ infrared spectroscopy study was applied to investigate the effect of Pt-PbO2 and revealed that the adsorbtion of C—OH, the oxidatin of C—OH and C=O bond were promoted on Pt-PbO2 electrode. Finally, by optimizing the electrolyte type and concentration, ethanolamine concentration, and current density, glycine was obtained in a high yield of 90.54%, along with a glycine selectivity and an ethanolamine conversion of more than 90%. The electrooxidation reaction is repeatable, and 88% MEA can be collected from the electrolyte.

Key words: ethanolamine electrooxidation, glycine, electrolytic cell structure screening, electrooxidation mechanism, optimal electrolysis conditions