有机化学 ›› 2020, Vol. 40 ›› Issue (10): 3132-3153.DOI: 10.6023/cjoc202005092 上一篇 下一篇
所属专题: 黄乃正院士七十华诞专辑
综述与进展
乐贵洲a, 刘波b
收稿日期:
2020-05-30
修回日期:
2020-06-19
发布日期:
2020-07-01
通讯作者:
乐贵洲
E-mail:yueguizhou@sicau.edu.cn;chembliu@scu.edu.cn
基金资助:
Yue Guizhoua, Liu Bob
Received:
2020-05-30
Revised:
2020-06-19
Published:
2020-07-01
Supported by:
文章分享
各种杂环骨架广泛存在于天然产物、药物分子及有机材料中,它们的合成方法也多种多样,其中1,3-偶极环加成反应是构建杂环重要的一类方法.2005年之前,有机化学家们将精力主要集中在1,3-偶极子的[3+2]环加成反应,构建五元杂环;随着研究的深入,逐渐将注意力转向[3+3]、[3+4]、[3+5]及[3+6]等环加成,构建六元、七元、八元及桥杂环等.关于1,3-偶极环加成反应的综述已有很多,但它们讨论的重点是[3+2]环加成.到目前为止,还没有专门的综述来探讨其它环加成反应的概况及其应用前景.因此,对各种1,3-偶极子的[3+n](n≥3)环加成反应进行详细的综述及评论,并对其领域提出展望.
乐贵洲, 刘波. 1,3-偶极子[3+n](n≥3)环加成反应的研究进展[J]. 有机化学, 2020, 40(10): 3132-3153.
Yue Guizhou, Liu Bo. Research Progress on [3+n] (n≥3) Cycloaddition of 1,3-Diploes[J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3132-3153.
[1] Seeman, J. I.; Restrepo, G. Angew. Chem. Int. Ed. 2020, 59, 12250. [2] Huisgen, P. D. R. Angew. Chem. Int. Ed. 1963, 2, 565. [3] Delpierre, G.; Lamchen, M. Quart. Rev. Chem. Soc. 1965, 19, 329. [4] Stuckwisch, C. G. Synthesis 1973, 469. [5] Timpe, H.-J. Heteroaromatic N-Imines. In Advances in Heterocyclic Chemistry, Eds:Katritzky, A. R.; Boulton, A. J., Academic Press, Pittsburgh, 1974; Vol. 17, p. 213. [6] Black, D. S. C.; Crozier, R. F.; Davis, V. C. Synthesis 1975, 205. [7] Tamura, Y.; Ikeda, M. Advances in the Chemistry of Heteroaromatic N-Imines and N-Aminoazonium Salts. In Advances in Heterocyclic Chemistry, Eds.:Katritzky, A. R.; Boulton, A. J., Academic Press, Pittsburgh, 1981; Vol. 29, p. 71. [8] Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. [9] Rodina, L. L.; Kolberg, A.; Schulze, B. Heterocycles 1998, 49, 587. [10] Zhao B.-X. Prog. Chem. 2000, 12, 77(in Chinese). (赵宝祥, 化学进展, 2000, 12, 77.) [11] Xu J.-X.; Jiao P. Prog. Chem. 2000, 12, 131(in Chinese). (许家喜, 焦鹏, 化学进展, 2000, 12, 131.) [12] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004. [13] Kotyatkina, A. I.; Zhabinsky, V N.; Khripach, V. A. Russ. Chem. Rev. 2001, 70, 641. [14] Osborn, H. M. I.; Gemmell, N.; Harwood, L. M. J. Chem. Soc., Perkin Trans. 12002, 2419. [15] Padwa A.; Pearson W. H. The Chemistry of Heterocyclic Compounds:Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, John Wiley & Sons, New York, 2002. [16] Schantl, J. G. Sci. Synth. 2004, 27, 731. [17] Harju, K.; Yli-Kauhaluoma, J. Mol. Div. 2005, 9, 187. [18] Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507. [19] Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. [20] Hu, X.-F.; Feng, Y.-Q.; Li, X.-F. Chin. J. Org. Chem. 2005, 25, 1(in Chinese). (胡晓芬, 冯亚青, 李筱芳, 有机化学, 2005, 25, 1.) [21] Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2006, 2873. [22] Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. [23] Wang, F.; Bai D.-L. Chin. J. Org. Chem. 2006, 26, 9(in Chinese). (王峰, 白东鲁, 有机化学, 2006, 26, 9.) [24] Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. [25] Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247. [26] Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. [27] Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272. [28] Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784. [29] Yang, J. Synlett 2012, 2293. [30] Lashgari, N.; Ziarani, G. M. ARKIVOC 2012, i, 277. [31] Tanimoto, H.; Kakiuchi, K. Nat. Prod. Commun. 2013, 8, 1021. [32] Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396. [33] Han, Q.; Yi, C.; Xiong, X., Chin. J. Org. Chem. 2014, 34, 1092(in Chinese). (韩骞, 易超; 熊兴泉, 有机化学, 2014, 34, 1092.) [34] Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. [35] Najera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596. [36] Padwa, A.; Bur, S. Recent Advances of 1,3-Dipolar Cycloaddition Chemistry for Alkaloid Synthesis. In Advances in Heterocyclic Chemistry, Eds.:Scriven, E. F. V.; Ramsden C. A., Academic Press, Pittsburgh, 2016, Vol. 119, p. 241. [37] Sears, J. E.; Boger, D. L. Acc. Chem. Res. 2016, 49, 241. [38] Meyer, A. G.; Ryan, J. H. Molecules 2016, 21, 935. [39] Belskaya, N. P.; Bakulev, V. A.; Fan, Z. Chem. Heterocycl. Compd. 2016, 52, 627. [40] Yuan, B.-B.; Li, Y.-M.; Wang, Q.-L.; Bu, Z.-W. Chem. Res. 2017, 28, 135(in Chinese). (袁贝贝, 李雅宁, 郭娇美, 王琪琳, 卜站伟, 化学研究, 2017, 28, 135.) [41] Pozgan, F.; Al Mamari, H.; Groselj, U.; Svete, J.; Stefane, B. Molecules 2017, 23, 3. [42] Xuan, J.; Cao, X.; Cheng, X. Chem. Commun. 2018, 54, 5154. [43] Li, J.; Ye, Y.; Zhang, Y. Org. Chem. Front. 2018, 5, 864. [44] Arrastia, I.; Arrieta, A.; Cossío, F. P. Eur. J. Org. Chem. 2018, 5889. [45] Grošelj, U.; Svete, J.; Mamari, H. H. A.; Požgan, F.; Štefane, B. Chem. Heterocycl. Compd. 2018, 54, 214. [46] Grošelj, U.; Požgan, F.; Štefane, B.; Svete, J. Synthesis 2018, 4501. [47] Frankowski, S.; Romaniszyn, M.; Skrzynska, A.; Albrecht, L. Chemistry 2019. [48] Gulevskaya, A. V.; Nelina-Nemtseva, J. I. Chem. Heterocycl. Compd. 2019, 54, 1084. [49] Gao, K.; Zhang, Y. G.; Wang, Z.; Ding, H. Chem. Commun. 2019, 55, 1859. [50] Sukhorukov, A. Adv. Synth. Catal. 2019, 362, 724. [51] Nebra, N.; García-Álvarez, J. Molecules 2020, 25, 2015. [52] Zhu, Y.; Huang, Y. Synthesis 2020, 1181. [53] Brunel, D.; Dumur, F. New J. Chem. 2020, 44, 3546. [54] Gui, H.-Z.; Wei, Y.; Shi, M. Chem. Asian J. 2020, 15, 1225. [55] Dhameja, M.; Kumar, H.; Gupta, P. Asian J. Org. Chem. 2020, in press. [56] Breugest, M.; Reissig, H. U. Angew. Chem. Int. Ed. 2020, 59, 12293. [57] Wei, L.; Chang, X.; Wang, C.-J. Acc. Chem. Res. 2020, 53, 1084. [58] Mori, M.; Sugiyama, T.; Nojima, M.; Kusabayashi, S.; Mc- Cullough, K. J. J. Org. Chem. 1992, 57, 2285. [59] Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504. [60] Singh, P.; Varshnaya, R. K.; Dey, R.; Banerjee, P. Adv. Syn. Catal. 2020, 362, 1447. [61] Werz, D. B.; Biju, A. T. Angew. Chem. Int. Ed. 2020, 59, 3385. [62] Ivanova, O. A.; Trushkov, I. V. Chem. Rec. 2020, 19, 2189. [63] Wu, L.; Shi, M. Chem. Eur. J. 2010, 16, 1149. [64] Yang, W.; Wang, T.; Yu, Y.; Shi, S.; Zhang, T.; Hashmi, A. S. K. Adv. Syn. Catal. 2013, 355, 1523. [65] El Bouakher, A.; Martel, A.; Comesse, S. Org. Biomol. Chem. 2019, 17, 8467. [66] An, Y.; Xia, H.; Wu, J. Chem. Commun. 2016, 52, 10415. [67] Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. RSC Adv. 2017, 7, 55106. [68] Jia, Q.; Li, D.; Lang, M.; Zhang, K.; Wang, J. Adv. Syn. Catal. 2017, 359, 3837. [69] Luo, Y.; Chen, C.-H.; Zhang, J.-Q.; Liang, C.; Mo, D.-L. Synthesis 2019, 52, 424. [70] Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764. [71] Sapeta, K.; Kerr, M. A. J. Org. Chem. 2007, 72, 8597. [72] Wang, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402. [73] Xu, X.; Zavalij, P. J.; Doyle, M. P. Chem. Commun. 2013, 49, 10287. [74] Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 5901. [75] Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669. [76] Zhou, L.; Xu, B.; Ji, D.; Zhang, Z. M.; Zhang, J. Chin. J. Chem. 2020, in press. [77] Xu, P. W.; Liu, J. K.; Shen, L.; Cao, Z. Y.; Zhao, X. L.; Yan, J.; Zhou, J. Nat. Commun. 2017, 8, 1619. [78] Bai, Y.; Fang, J.; Ren, J.; Wang, Z. Chem. Eur. J. 2009, 15, 8975. [79] Stevens, A. C.; Palmer, C.; Pagenkopf, B. L. Org. Lett. 2011, 13, 1528. [80] Zhang, Y.; Zhang, J. Chem. Commun. 2012, 48, 4710. [81] Hu, J.-L.; Wang, L.; Xu, H.; Xie, Z.; Tang, Y. Org. Lett. 2015, 17, 2680. [82] Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 12356. [83] Shintani, R.; Murakami, M.; Hayashi, T. Pure Appl. Chem. 2008, 80, 1135. [84] Gawade, S. A.; Bhunia, S.; Liu, R. S. Angew. Chem. Int. Ed. 2012, 51, 7835. [85] Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330. [86] Li, S.-N.; Yu, B.; Liu, J.; Li, H.-L.; Na, R. Synlett 2016, 27, 282. [87] Wang, K.-K.; Li, Y.-L.; Wang, Z.-Y.; Hu, M.-W.; Qiu, T.-T.; Zhu, B.-K. Org. Biomol. Chem. 2018, 17, 244. [88] Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org. Lett. 2008, 10, 689. [89] Chagarovskiy, A. O.; Vasin, V. S.; Kuznetsov, V. V.; Ivanova, O. A.; Rybakov, V. B.; Shumsky, A. N.; Makhova, N. N.; Trushkov, I. V. Angew. Chem. Int. Ed. 2018, 57, 10338. [90] Chagarovskiy, A. O.; Kuznetsov, V. V.; Ivanova, O. A.; Goloveshkin, A. S.; Levina, I. I.; Makhova, N. N.; Trushkov, I. V. Eur. J. Org. Chem. 2019, 2019, 5475. [91] Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337. [92] Liang, L.; Huang, Y. Org. Lett. 2016, 18, 2604. [93] Li, Y.; Zhang, Z. New J. Chem. 2019, 43, 13600. [94] Liu, J.; Liu, H.; Na, R.; Wang, G.; Li, Z.; Yu, H.; Wang, M.; Zhong, J.; Guo, H. Chem. Lett. 2012, 41, 218. [95] Li, Z.; Yu, H.; Liu, Y.; Zhou, L.; Sun, Z.; Guo, H. Adv. Synth. Catal. 2016, 358, 1880. [96] Qian, Y.; Zavalij, P. J.; Hu, W.; Doyle, M. P. Org. Lett. 2013, 15, 1564. [97] Cheng, X.; Cao, X.; Xuan, J.; Xiao, W.-J. Org. Lett. 2018, 20, 52. [98] Ansari, A. J.; Pathare, R. S.; Kumawat, A.; Maurya, A. K.; Verma, S.; Agnihotri, V. K.; Joshi, R.; Metre, R. K.; Sharon, A.; Pardasani, R. T.; Sawant, D. M. New J. Chem. 2019, 43, 13721. [99] Zhu, G.; Sun, W.; Wu, C.; Li, G.; Hong, L.; Wang, R. Org. Lett. 2013, 15, 4988. [100] Fang, X.; Li, J.; Tao, H.-Y.; Wang, C.-J. Org. Lett. 2013, 15, 5554. [101] Du, J.; Xu, X.; Li, Y.; Pan, L.; Liu, Q. Org. Lett. 2014, 16, 4004. [102] Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654. [103] Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. [104] Efremova, M. M.; Kostikov, R. R.; Stepakov, A. V.; Panikorovsky, T. L.; Shcherbakova, V. S.; Ivanov, A. V.; Molchanov, A. P. Tetrahedron 2017, 73, 671. [105] T. P.; Krishna, A. V.; Ramachary, D. B. Org. Lett. 2018, 20, 6979. [106] Fang, Q-Y.; Jin, H-S.; Wang, R-B.; Zhao, L-M. Chem. Commun. 2019, 55, 10587. [107] Liu, Y.; Zhen, W.; Dai, W.; Wang, F.; Li, X. Org. Lett. 2013, 15, 874. [108] Moghaddam, F. M.; Eslami, M.; Siahpoosh, A.; Golfam, H. New J. Chem. 2019, 42, 10318. [109] Wang, X.; Yang, P.; Zhang, Y.; Tang, C.-Z.; Tian, F.; Peng, L.; Wang, L.-X. Org. Lett. 2017, 19, 646. [110] Hu, S.; Zhang, J.; Jin, Q. New J. Chem. 2018, 42, 7025. [111] Zhou, Y. Y.; Li, J.; Ling, L.; Liao, S. H.; Sun, X. L.; Li, Y. X.; Wang, L. J.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 1452. [112] Guo, H.; Liu, H.; Zhu, F.-L.; Na, R.; Jiang, H.; Wu, Y.; Zhang, L.; Li, Z.; Yu, H.; Wang, B.; Xiao, Y.; Hu, X.-P.; Wang, M. Angew. Chem. Int. Ed. 2013, 52, 12641. [113] Zhang, L.; Liu, H.; Qiao, G.; Hou, Z.; Liu, Y.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2015, 137, 4316. [114] Du, Q.; Neudoerfl, J.-M.; Schmalz, H.-G. Chem. Eur. J. 2018, 24, 2379. [115] Xu, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. Chem. Commun. 2013, 49, 2762. [116] Jing, C.; Na, R.; Wang, B.; Liu, H.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J.; Kwon, O.; Guo, H. Adv. Synth. Catal. 2012, 354, 1023. [117] Li, Z.; Yu, H.; Feng, Y.; Hou, Z.; Zhang, L.; Yang, W.; Wu, Y.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 34481. [118] Hu, X.-Q.; Chen, J.-R.; Gao, S.; Feng, B.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2013, 49, 7905. [119] Li, Z.; Li, S.; Kan, T.; Wang, X.; Xin, X.; Hou, Y.; Gong, P. Adv. Synth. Catal. 2020, 362, 2626. [120] Water, R. W. V. D.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367. [121] Grotenhuis, C. T.; Bruin, B. D. Synlett 2018, 29, 2238. [122] Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926. [123] Mei, G.-J.; Zhu, Z.-Q.; Zhao, J.-J.; Bian, C.-Y.; Chen, J.; Chen, R.-W.; Shi, F. Chem. Commun. 2017, 53, 2768. [124] Chen, L.; Yang, G.; Wang, J.; Jia, Q.; Wei, J.; Du, Z. RSC Adv. 2015, 5, 76696. [125] Jin, Q.; Zhang, J.; Jiang, C.; Zhang, D.; Gao, M.; Hu, S. J. Org. Chem. 2018, 83, 8410. [126] Li, C.; Wang, C. S.; Li, T. Z.; Mei, G. J.; Shi, F. Org. Lett. 2019, 21, 598. [127] Dai, W.; Li, C.; Liu, Y.; Han, X.; Li, X.; Chen, K.; Liu, H. Org. Chem. Front. 2020, 7, 2612.. [128] Wei, L.; Wang, Z. F.; Yao, L.; Qiu, G.; Tao, H.; Li, H.; Wang, C. J. Adv. Syn. Catal. 2016, 358, 3955. [129] Yuan, C.; Wu, Y.; Wang, D.; Zhang, Z.; Wang, C.; Zhou, L.; Zhang, C.; Song, B.; Guo, H. Adv. Syn. Catal. 2018, 360, 652. [130] Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 1258. [131] Wu, Y.; Qiao, G.; Liu, H.; Zhang, L.; Sun, Z.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 84290. [132] Shi, F.; Zhu, R. Y.; Dai, W.; Wang, C. S.; Tu, S. J. Chem.-Eur. J. 2014, 20, 2597. [133] Yuan, C.; Liu, H.; Gao, Z.; Zhou, L.; Feng, Y.; Xiao, Y.; Guo, H., Org. Lett. 2015, 17, 26. [134] Yang, W.-L.; Li, C.-Y.; Qin, W.-J.; Tang, F.-F.; Yu, X.; Deng, W.-P. ACS Catal. 2016, 6, 5685. [135] Kim, S.; Kim, S.-G. Asian J. Org. Chem. 2019, 8, 1621. [136] Dai, Z.; Zhu, J.; Wang, J.; Su, W.; Yang, F.; Zhou, Q. Adv. Synth. Catal. 2019, 362, 545. [137] Zhao, H.-W.; Wang, L.-R.; Guo, J.-M.; Ding, W.-Q.; Song, X.-Q.; Wu, H.-H.; Tang, Z.; Fan, X.-Z.; Bi, X.-F. Adv. Synth. Catal. 2019, 361, 4761. [138] Niu, B.; Wu, X. Y.; Wei, Y.; Shi, M. Org. Lett. 2019, 21, 4859. [139] Wu, Y.; Liu, H.; Zhang, L.; Sun, Z.; Xiao, Y.; Huang, J.; Wang, M.; Guo, H. RSC Adv. 2016, 6, 73547. [140] Potowski, M.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2012, 51, 9512. [141] He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem. Int. Ed. 2013, 52, 2934. [142] Teng, H. L.; Yao, L.; Wang, C. J. J. Am. Chem. Soc. 2014, 136, 4075. [143] Li, Q. H.; Wei, L.; Wang, C. J. J. Am. Chem. Soc. 2014, 136, 8685. [144] He, Z. L.; Sheong, F. K.; Li, Q. H.; Lin, Z.; Wang, C. J. Org. Lett. 2015, 17, 1365. [145] Liu, H.; Wu, Y.; Zhao, Y.; Li, Z.; Zhang, L.; Yang, W.; Jiang, H.; Jing, C.; Yu, H.; Wang, B.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2014, 136, 2625. [146] Petzold, M.; Jones, P. G.; Werz, D. B. Angew. Chem. Int. Ed. 2019, 58, 6225. [147] Petzold, M.; Günther, A.; Jones, P. G., Werz, D. B. Chem.-Eur. J. 2020, in press. [148] Suneja, A.; Loui, H. J.; Schneider, C. Angew. Chem. Int. Ed. 2020, 59, 5536. [149] McLeod, D.; Cherubini-Celli, A.; Sivasothirajah, N.; McCulley, C. H.; Christensen, M. L.; Jørgensen, K. A. Chem.-Eur. J. 2020, 26, 11417. [150] Garve, L. K.; Petzold, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2016, 18, 564. [151] Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. RSC Adv. 2017, 7, 55106. [152] Pearson, W. H.; Fang, W.; Kampf, J. W. J. Org. Chem. 1994, 59, 2682. [153] Scadeng, O.; Ferguson, M. J.; West, F. G. Org. Lett. 2011, 13, 114. [154] Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org. Lett. 2014, 16, 4896. [155] Xu, X.; Zhang, K.; Li, P.; Yao, H.; Lin, A. Org. Lett. 2018, 20, 1781. [156] D'Souza, A. M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L. S.-M.; Meyer, A. G.; Holmes, A. B.; White, J. M.; Ryan, J. H. Org. Lett. 2011, 13, 486. [157] D'Souza, A. M.; Rivinoja, D. J.; Mulder, R. J.; White, J. M.; Meyer, A. G.; Hyland, C. J. T.; Ryan, J. H. Aust. J. Chem. 2018, 71, 690. [158] Soeta, T.; Tamura, K.; Ukaji, Y. Org. Lett. 2012, 14, 1226. [159] Wu, Y.; Tian, B.; Hu, C.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, S. Org. Biomol. Chem. 2019, 17, 5505. [160] Kumari, P.; Liu, W.; Wang, C. J.; Dai, J.; Wang, M. X.; Yang, Q. Q.; Deng, Y. H.; Shao, Z. Chin. J. Chem. 2019, 38, 151. [161] Trost, B. M.; Zuo, Z. Angew. Chem. Int. Ed. 2020, 59, 1243. [162] Zheng, P.; Li, C.; Mou, C.; Pan, D.; Wu, S.; Xue, W.; Jin, Z.; Chi, Y. R. Asian J. Org. Chem. 2019, 8, 1067. |
[1] | 张晓轲, 郑相如, 王朝永. 偶氮次甲基亚胺与氮杂二烯前体的[4+3]环加成反应构建功能化四氮杂䓬衍生物[J]. 有机化学, 2023, 43(9): 3180-3187. |
[2] | 刘华超, 沈冲, 常鑫, 王春江. 动力学拆分在催化不对称1,3-偶极环加成反应中的研究进展[J]. 有机化学, 2022, 42(10): 3322-3334. |
[3] | 邹宁, 覃小婷, 王治新, 石维敏, 莫冬亮. α,β-不饱和硝酮的合成及其应用的研究进展[J]. 有机化学, 2021, 41(12): 4535-4553. |
[4] | 史望宇, 徐嘉擎, 毛比明, 贾皓, 黄家兴, 郭红超. 氰基亚胺与亚甲基二氢苯并呋喃二酮类化合物的[3+2]环加成反应:螺吡唑类化合物的合成[J]. 有机化学, 2020, 40(3): 756-762. |
[5] | 华庭碧, 阳青青, 肖文精. C,N-环状偶氮次甲基亚胺参与的反应研究进展[J]. 有机化学, 2020, 40(11): 3559-3595. |
[6] | 卫亮, 肖露, 胡远征, 汪昨非, 陶海燕, 王春江. 金属化亚甲胺叶立德在手性非天然α-氨基酸合成中的应用研究进展[J]. 有机化学, 2019, 39(8): 2119-2130. |
[7] | 李明龙, 曹茜娴, 由君, 喻艳超, 武文菊, 刘波. 手性双噁唑啉金属络合物催化N-α,β-不饱和酰基化合物与C,N-二芳基硝酮的不对称1,3-偶极环加成反应[J]. 有机化学, 2019, 39(6): 1642-1649. |
[8] | 王博, 王奇君, 刘洪蕾, 廖健宁, 黄家兴, 郭红超. 通过氰基亚胺与香豆灵酸甲酯的1,3-偶极环加成反应合成二氢吡喃并吡唑酮[J]. 有机化学, 2019, 39(5): 1354-1361. |
[9] | 孟智颖, 顾萌萌, 汪梦瑶, 许静, 高旭, 郝甘露, 荣良策. 无溶剂合成新亚甲胺型叶立德:1-二氨基亚甲基铵(芳基)甲基-4,4-二甲基-2,6-二氧代-1-环己烷化合物[J]. 有机化学, 2017, 37(1): 213-217. |
[10] | 刘迅绅, 李美美, 由君, 刘波. Ni-DBFOX/Ph催化N-α,β-不饱和酰基吡唑与C,N-二芳基硝酮的不对称1,3-偶极环加成反应[J]. 有机化学, 2017, 37(1): 86-91. |
[11] | 李小六*; 王彦坡; 陈 华 ; 李志伟; 邢春勇. 微波促进的葡萄糖烯与硝酮的1,3-偶极环加成反应[J]. 有机化学, 2008, 28(10): 1750-1755. |
[12] | 孙小军,董卫莉,赵卫光,李正名. 2-取代-3-芳基-4-噻唑啉(硫)酮衍生物的合成、晶体结构和生物活性[J]. 有机化学, 2007, 27(11): 1374-1380. |
[13] | 王峰,白东鲁. 亚甲胺叶立德参与的[3+2]环加成反应的最新进展[J]. 有机化学, 2006, 26(01): 9-18. |
[14] | 胡晓芬,冯亚青,李筱芳. 手性Lewis酸催化硝酮与烯烃的1,3-偶极环加成反应[J]. 有机化学, 2005, 25(01): 1-7. |
[15] | 陈庆华,谢孟峡,贾西贝,王学良. 分子内1,3-偶极环加成反应的研究 IV: 某些硝酮偶极体系的热及光化学反应及区域选择性[J]. 有机化学, 1989, 9(2): 156-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||