有机化学 ›› 2020, Vol. 40 ›› Issue (11): 3812-3827.DOI: 10.6023/cjoc202006051 上一篇 下一篇
所属专题: 创刊四十周年专辑
综述与进展
刘伊迪, 杨骐, 李遥, 张龙, 罗三中
收稿日期:
2020-06-24
修回日期:
2020-07-22
发布日期:
2020-08-06
通讯作者:
张龙, 罗三中
E-mail:luosz@tsinghua.edu.cn;zhanglong@tsinghua.edu.cn
基金资助:
Liu Yidi, Yang Qi, Li Yao, Zhang Long, Luo Sanzhong
Received:
2020-06-24
Revised:
2020-07-22
Published:
2020-08-06
Supported by:
文章分享
近年来,由于计算能力、大数据和算法的不断进步,人工智能(Artificial intelligence,AI)重新兴起,已成为诸多研究领域变革性发展背后的重要推动力.机器学习(Machine learning,ML)是人工智能一个重要的研究领域.随着化学信息学的发展,机器学习在化学领域展现出巨大的发展潜力,也为有机化学的发展带来了新的机遇.为帮助有机化学家了解这一新兴领域,对如何将机器学习策略应用于有机化学研究做简单介绍,同时,概括总结了机器学习在化合物性质预测、分子从头设计、化学反应预测、逆合成分析和智能合成机器方面的应用实例,分析讨论了当前机器学习在有机化学领域面临的挑战和难题.
刘伊迪, 杨骐, 李遥, 张龙, 罗三中. 机器学习在有机化学中的应用[J]. 有机化学, 2020, 40(11): 3812-3827.
Liu Yidi, Yang Qi, Li Yao, Zhang Long, Luo Sanzhong. Application of Machine Learning in Organic Chemistry[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3812-3827.
[1] McCarthy, J.; Minsky, M. L.; Rochester, N.; Shannon, C. E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, AI Magazine, 2006, 27, 12. [2] Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 255. [3] Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Nature 2016, 529, 484. [4] Skoraczyński, G.; Dittwald, P.; Miasojedow, B.; Szymkuć, S.; Gajewska, E. P.; Grzybowski, B. A.; Gambin, A. Sci. Rep. 2017, 7, 3582. [5] Samuel, A. L. IBM J. Res. Dev. 1959, 3, 210. [6] Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; Goodman, N. D. Science 2011, 331, 1279. [7] (a) Rupp, M. Phys. Rev. Lett. 2012, 108, 058301. (b) Müller, K.-R. J. Chem. Theory Comput. 2013, 9, 3404. [8] Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. K.; Burke, K.; Müller, K.-R. Nat. Commun. 2017, 8, 872. [9] (a) Stokes, J. M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N. M.; MacNair, C. R.; French, S.; Carfrae, L. A.; Bloom-Ackerman, Z.; Tran, V. M.; Chiappino-Pepe, A.; Badran, A. H.; Andrews, L. W.; Chory, E. J.; Church, G. M.; Brown, E. D.; Jaakkola, T. S.; Barzilay, R.; Collins, J. J. Cell 2020, 180, 688. (b) Li, W.; Yang, J. C.; Huang, N. Acta Pharm. Sin. 2019, 54, 761(in Chinese). (李伟, 杨金才, 黄牛, 药学学报, 2019, 54, 761.) [10] (a) Sun, T. L.; Pei, J. F. Chin. Sci. Bull. 2015, 60, 689(in Chinese). (孙潭霖, 裴剑锋, 科学通报, 2015, 60, 689.) (b) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. ACS Cent. Sci. 2018, 4, 268. (c) Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P. ACS Cent. Sci. 2018, 4, 120. [11] (a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604. (b) Segler, M. H. S.; Waller, M. P. Chem.-Eur. J. 2017, 23, 5966. [12] Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377. [13] Warr, W. A. Mol. Inf. 2014, 33, 469. [14] Blum, L. C.; Reymond, J.-L. J. Am. Chem. Soc. 2009, 131, 8732. [15] Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. J. Chem. Inf. Model. 2012, 52, 2864. [16] Delaney, J. S. J. Chem. Inf. Comput. Sci. 2004, 44, 1000. [17] Mobley, D. L.; Guthrie, J. P. J. Comput.-Aided Mol. Des. 2014, 28, 711. [18] Sterling, T.; Irwin, J. J. J. Chem. Inf. Model. 2015, 55, 2324. [19] (a) Akhondi, S. A.; Klenner, A. G.; Tyrchan, C.; Manchala, A. K.; Boppana, K.; Lowe, D.; Zimmermann, M.; Jagarlapudi, S. A. R. P.; Sayle, R.; Kors, J. A.; Muresan, S. PloS One 2014, 9, el07477. (b) Southan, C. Drug Discovery Today:Technol. 2015, 14, 3. (c) Lowe, D. M. PhD. Dissertation, University of Cambridge, Cambridge, 2012. [20] Manickam, Y.; Chaturvedi, R.; Babbar, P.; Malhotra, N.; Jain, V.; Sharma, A. Drug Discovery Today 2018, 23, 6. [21] (a) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. J. Chem. Inf. Model. 2015, 55, 39. (b) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385. [22] Rahman, S. A.; Torrance, G.; Baldacci, L.; Cuesta, S. M.; Fenninger, F.; Gopal, N.; Choudhary, S.; May, J. W.; Holliday, G. L.; Steinbeck, C.; Thornton, J. M. Bioinformatics 2016, 32, 2065. [23] Cooper, T. W. J.; Campbell, I. B.; Macdonald, S. J. F. Angew. Chem., Int. Ed. 2010, 49, 8082. [24] Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L.-C.; Schneeweis, J.; Berritt, S.; Shi, Z.-C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; Vachal, P.; Davies, I. W.; Cernak, T.; Dreher, S. D. Science 2015, 347, 49. [25] Tetko, I. V.; Engkvist, O.; Chen, H. Future Med. Chem. 2016, 8, 1801. [26] ChemAxon http://chemaxon.com. [27] Landrum, G. RDKit:Open-source Cheminformatics, 2014, http://www.rdkit.org. [28] (a) Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. J. Chem. Inf. Comput. Sci. 2003, 43, 493. (b) Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Curr. Pharm. Des. 2006, 12, 2111. (c) Chemistry Development Kit, 2014, https://cdk.github.io/. [29] Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. J. Chem. Inf. Comput. Sci. 2002, 42, 1273. [30] (a) Cereto-Massague, A.; Jose Ojeda, M.; Valls, C.; Mulero, M.; Garcia-Vallve, S.; Pujadas, G. Methods 2015, 71, 58. (b) Muegge, I.; Mukherjee, P. Expert Opin. Drug Discovery 2016, 11, 137. [31] (a) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 170. (b) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 1708. [32] Morgan, H. L. J. Chem. Doc. 1965, 5, 107. [33] Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742. [34] O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. J. Cheminf. 2011, 3, 33. [35] Indigo-GGA Software Services 2014. https://github.com/ggasoft-ware/indigo. [36] Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31. [37] Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. J. Cheminf. 2013, 5, 7. [38] Jeliazkova, N.; Kochev, N. Mol. Inf. 2011, 30, 707. [39] Raymond, J. W.; Willett, P. J. Comput.-Aided Mol. Des. 2002, 16, 521. [40] Rupp, M.; Tkatchenko, A.; Muller, K. R.; von Lilienfeld, O. A. Phys. Rev. Lett. 2012, 108, 058301. [41] (a) Hochuli, J.; Helbling, A.; Skaist, T.; Ragoza, M.; Koes, D. R. J. Mol. Graphics Modell. 2018, 84, 96. (b) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. J. Chem. Inf. Model. 2017, 57, 942. [42] Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631. [43] (a) Sutton, R. S. Mach. Learn. 1988, 3, 9. (b) François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.; Pineau, J. Found. Trends Mach. Learn. 2018, 11, 219. [44] (a) Koski, T.; Noble, J. Mathematica Applicanda (Matematyka Stosowana) 2012, 40, 51. (b) Spiegelhalter, D. J. J. R. Statist. Soc. C 1998, 47, 115. [45] Quinlan, J. R. Mach. Learn. 1986, 1, 81. [46] (a) Domingos, P.; Pazzani, M. Mach. Learn. 1997, 29, 103. (b) Webb, G. I.; Boughton, J. R.; Wang, Z. Mach. Learn. 2005, 58, 5. (c) Maron, M. E. J. ACM 1961, 8, 404. [47] Cortes, C.; Vapnik, V. Mach. Learn. 1995, 20, 273. [48] (a) Achtert, E.; Böhm, C.; Kriegel, H.-P.; Kröger, P.; Müller-Gorman, I.; Zimek, A. In Finding Hierarchies of Subspace Clusters, Knowledge Discovery in Databases:PKDD 2006 Series 4213, Springer Berlin Heidelberg, Heidelberg, 2006, pp. 446~453. (b) Kriegel, H.-P.; Kröger, P.; Zimek, A. WIREs Data Mining Knowl. Discov. 2012, 2, 351. (c) Sibson, R. Comput. J. 1973, 16, 30. (d) Banerjee, A.; Dave, R. N. In Validating Clusters using the Hopkins Statistic, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), IEEE, Budapest, 2004, pp. 149~153. (e) Estivill-Castro, V. SIGKDD Explor. Newsl. 2002, 4, 65. [49] (a) Breiman, L. Mach. Learn. 2001, 45, 5. (b) Ho, T. K. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832. [50] Zhou, Z. H. Machine Learning, Tsinghua University Press, Beijing, 2016 (in Chinese). (周志华, 机器学习, 清华大学出版社, 北京, 2016.) [51] Pedregosa, F.; Varoquaux, G.; Gramfort, V.; Michel, B.; Thirion, O.; Grisel, M.; Blondel, P.; Prettenhofer, R.; Weiss, V.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. J. Mach. Learn. Res. 2011, 12, 2825. [52] (a) Maass, W. Neural Net. 1997, 10, 1659. (b) Wang, W.; Pedretti, G.; Milo, V.; Carboni, R.; Calderoni, A.; Ramaswamy, N.; Spinelli, A. S.; Ielmini, D. Sci. Adv. 2018, 4, eaat4752. (c) Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S. R.; Masquelier, T.; Maida, A. Neural Netw. 2019, 111, 47. [53] McCulloch, W. S.; Pitts, W. Bull Math. Biophys. 1943, 5, 115. [54] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. J. Mach. Learn. Res. 2014, 15, 1929. [55] Li, W.; Matthew, Z.; Sixin, Z.; Yann Le, C.; Rob, F. In Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research Series 28, Eds.:Dasgupta, S.; McAllester, D., Proceedings of Machine Learning Research, Atlanta, 2013, pp. 1058~1066. [56] Nair, V.; Hinton, G. E. In International Conference on Machine Learning, Proceedings of the 27th International Conference on Machine Learning, International Conference on Machine Learning Series 27, International Conference on Machine Learning, Haifa, 2010. [57] (a) Zhou, J.; Cui, G.; Zhang, Z. Y.; Yang, C.; Liu, Z. Y.; Wang, L. F.; Li, C. C.; Sun, M. arXiv e-prints 2018, arXiv:1812.08434. (b) Zhang, Z. W.; Cui, P.; Zhu, W. W. IEEE Trans. Knowl. Data Eng. 2020, doi:10.1109/TKDE.2020.2981333. [58] (a) Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.:Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2215~2223. (b) Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.; Green, W. H.; Barzilay, R.; Jensen, K. F. Chem. Sci. 2019, 10, 370. [59] Mitchell, J. B. O. Wires Comput. Mol. Sci. 2014, 4, 468. [60] Corey, E. J.; Wipke, W. T. Science 1969, 166, 178. [61] Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, I. I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. Chem. Soc. Rev. 2020, 49, 3525. [62] Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. J. Chem. Inf. Model. 2015, 55, 263. [63] Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. Front. Environ. Sci. 2016, 3, 80. [64] (a) Ramsundar, B.; Liu, B.; Wu, Z.; Verras, A.; Tudor, M.; Sheridan, R. P.; Pande, V. J. Chem. Inf. Model. 2017, 57, 2068. (b) Koutsoukas, A.; Monaghan, K. J.; Li, X.; Huan, J. J. Cheminf. 2017, 9, 42. (c) Lenselink, E. B.; ten Dijke, N.; Bongers, B.; Papadatos, G.; van Vlijmen, H. W. T.; Kowalczyk, W.; Ijzerman, A. P.; van Westen, G. J. P. J. Cheminf. 2017, 9, 45. [65] (a) Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. J. Chem. Inf. Model. 2016, 56, 1936. (b) Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Mol. Pharm. 2016, 13, 2524. (c) Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563. (d) Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. J. Chem. Inf. Model. 2015, 55, 208. [66] Ryu, S.; Kwon, Y.; Kim, W. Y. Chem. Sci. 2019, 10, 8438. [67] Gaulton, A.; Hersey, A.; Nowotka, M.; Patrícia Bento, A.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. L. Nucleic Acids Res. 2017, 45, 945. [68] (a) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch. A. J. Chem. Inf. Model. 2015, 55, 389. (b) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch, A. J. Chem. Inf. Model. 2015, 55, 389. [69] Roszak, R.; Beker, W.; Molga, K.; Grzybowski, B. A. J. Am. Chem. Soc. 2019, 141, 17142. [70] Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y. D.; Zhang, L.; Luo, S. Z.; Cheng, J.-P. Angew. Chem., Int. Ed. 2020, 59, 19282. [71] Yang, J.-D.; Xue, X.-S.; Ji, P.; Li, X.; Cheng, J.-P. Internet Bond-energy Databank (pKa and BDE):iBonD Home Page, http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn. [72] Hall, L. H. J. Chem. Inf. Comput. Sci. 1995, 35, 1039. [73] Feng, C.; Sharman, E.; Ye, S.; Luo, Y.; Jiang, J. Sci. China:Chem. 2019, 62, 1698. [74] Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Proceedings of the 34th International Conference on Machine Learning, In Proceedings of Machine Learning Research Series 70, Eds.:Precup, D.; Teh, Y. W., Proceedings of Machine Learning Research, Sydney, 2017, pp. 1263~1272. [75] Ertl, P.; Lewis, R.; Martin, E.; Polyakov, V. arXiv e-prints 2017, arXiv:1712.07449. [76] Liang, L.; Deng, C. L.; Zhang, Y. M.; Hua, Y.; Liu, H. C.; Lu, T.; Chen, Y. D. Prog. Pharm. Sci. 2020, 44, 18(in Chinese). (梁礼, 邓成龙, 张艳敏, 滑艺, 刘海春, 陆涛, 陈亚东, 药学进展, 2020, 44, 18.) [77] Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. Mol. Pharm. 2017, 14, 3098. [78] Goodfellow, I. arXiv e-prints 2016, arXiv:1701.00160. [79] Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Nat Biotechnol. 2019, 37, 1038. [80] Yu, L. T.; Zhang, W. N.; Wang, J.; Yu, Y. arXiv e-prints 2016, arXiv:1609.05473. [81] Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J. M.; Turner, R. E.; Eck, D. arXiv e-prints 2016, arXiv:1611.02796. [82] Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525. [83] Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Nat. Chem. 2012, 4, 90. [84] Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. J. Cheminf. 2017, 9, 48. [85] Benhenda, M. arXiv e-prints 2017, arXiv:1708.08227. [86] (a) Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. arXiv e-prints 2016, arXiv:1611.02163. (b) Unterthiner, T.; Nessler, B.; Seward, C.; Klambauer, G.; Heusel, M.; Ramsauer, H.; Hochreiter, S. arXiv e-prints 2017, arXiv:1708.08819. [87] Corey, E. J.; Wipke, W. T.; Cramer, R. D.; Howe, W. J. J. Am. Chem. Soc. 1972, 94, 431. [88] Hendrickson, J. B. Recl. Trav. Chim. Pays-Bas. 1992, 111, 323. [89] (a) Todd, M. H. Chem. Soc. Rev. 2005, 34, 247. (b) Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Angew. Chem., Int. Ed. 2016, 55, 5904. [90] de Almeida, A. F.; Moreira, R.; Rodrigues, T. Nat. Rev. Chem. 2019, 3, 589. [91] Kayala, M. A.; Azencott, C.-A.; Chen, J. H.; Baldi, P. J. Chem. Inf. Model. 2011, 51, 2209. [92] Kayala, M. A.; Baldi, P. J. Chem. Inf. Model. 2012, 52, 2526. [93] Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A. ACS Cent. Sci. 2019, 5, 1572. [94] McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420. [95] (a) Friedman, M.; Wall, J. S. J. Am. Chem. Soc. 1964, 86, 3735. (b) Friedman, M.; Cavins, J. F.; Wall, J. S. J. Am. Chem. Soc. 1965, 87, 3672. (c) Friedman, M.; Wall, J. S. J. Org. Chem. 1966, 31, 2888. [96] Toropov, A. A.; Kudyshkin, V. O.; Voropaeva, N. L.; Ruban, I. N.; Rashidova, S. S. J. Struct. Chem. 2004, 45, 945. [97] Yu, X.; Yi, B.; Wang, X. Eur. Polym. J. 2008, 44, 3997. [98] Morrill, J. A.; Biggs, J. H.; Bowman, C. N.; Stansbury, J. W. J. Mol. Graphics Modell. 2011, 29, 763. [99] Schwöbel, J. A. H.; Wondrousch, D.; Koleva, Y. K.; Madden, J. C.; Cronin, M. T. D.; Schüürmann, G. Chem. Res. Toxicol. 2010, 23, 1576. [100] Wondrousch, D.; Böhme, A.; Thaens, D.; Ost, N.; Schüürmann, G. J. Phys. Chem. Lett. 2010, 1, 1605. [101] (a) Zhang, L.; Li, X.; Luo, S. Z.; Cheng, J.-P. Sci. Sin.:Chim. 2016, 46, 535(in Chinese). (张龙, 李鑫, 罗三中, 程津培, 中国科学:化学, 2016, 46, 535.) (b) Li, Y.; Luo, S. Z. Chin. J. Org. Chem. 2018, 38, 2363(in Chinese). (李遥, 罗三中, 有机化学, 2018, 38, 2363.) [102] Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Mendeleev Commun. 2002, 12, 185. [103] Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366. [104] Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186. [105] Singh, S.; Pareek, M.; Changotra, A.; Banerjee, S.; Bhaskararao, B.; Balamurugan, P.; Sunoj, R. B. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1339. [106] Li, X.; Zhang, S.-Q.; Xu, L.-C.; Hong. X. Angew. Chem., Int. Ed. 2020, 59, 13253. [107] Sandfort, F.; Strieth-Kalthoff, F.; Kuhnemund, M.; Beecks, C.; Glorius, F. Chem 2020, 6, 1. [108] Lin, A. I.; Madzhidov, T. I.; Klimchuk, O.; Nugmanov, R. I.; Antipin, I. S.; Varnek, A. J. Chem. Inf. Model. 2016, 56, 2140. [109] Marcou, G.; Aires, de Sousa. J.; Latino, D. A. R. S.; de Luca, A.; Horvath, D.; Rietsch, V.; Varnek, A. J. Chem Inf. Model. 2015, 55, 239. [110] Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2018, 4, 1465. [111] Struebing, H.; Ganase, Z.; Karamertzanis, P.; Siougkrou, E.; Haycock, P.; Piccione, P. M.; Armstrong, A.; Galindo, A.; Adjiman, C. S. Nat. Chem. 2013, 5, 952. [112] Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. ACS Cent. Sci. 2018, 4, 1134. [113] (a) Baskin, I. I.; Madzhidov, T. I.; Antipin, I. S.; Varnek, A. A. Russ. Chem. Rev. 2017, 86, 1127. (b) Cook, A.; Johnson, A. P.; Law, J.; Mirzazadeh, M.; Ravitz, O.; Simon, A. Science 2012, 2, 79. (c) Zefirov, N. S.; Gordeeva, E. V. Russ. Chem. Rev. 1987, 56, 1002. [114] Coley, C. W.; Green, W. H.; Jensen, K. F. Acc. Chem. Res. 2018, 51, 1281. [115] Varnek, V.; Baskin, I. I. In Systems Medicine, Vol. 2, Eds.:Wolkenhauer, O., Academic Press, Oxford, 2021, pp. 190~197. [116] Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y. J. Chem. Inf. Model. 2019, 49, 593. [117] Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2017, 3, 1237. [118] Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu Nguyen, Q.; Ho, S.; Sloane, J.; Wender, P.; Pande, V. ACS Cent. Sci. 2017, 3, 1103. [119] Lin, L. J.; Xu, Y. J.; Pei, J. F.; Lai, L, H. Chem. Sci. 2020, 11, 3355. [120] Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Chem. Sci. 2020, 11, 3316. [121] (a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604. (b) Satoh, H.; Funatsu, K. J. Chem. Inf. Comput. Sci. 1995, 35, 34. [122] Schwaller, P.; Vaucher, A.; Nair, V. H.; Laino, T.; Reymond, J.-L. ChemRxiv Preprint 2019, https://doi.org/10.26434/chemrxiv.9897365.v2. [123] (a) Trobe, M.; Burke, M. D. Angew. Chem., Int. Ed. 2018, 57, 4192. (b) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449. [124] Sans, V.; Cronin, L. Chem. Soc. Rev. 2016, 45, 2032. [125] Houben, C.; Lapkin, A. A. Curr. Opin. Chem. Eng. 2015, 9, 1. [126] Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429. [127] Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.-X. J. Org. Chem. 2018, 83, 14286. [128] Steiner, S.; Wolf, J.; Glatze, S.; Andreou, A.; Granda, J. M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P. J.; Angelone, D.; Cronin, L. Science 2019, 363, eaav2211. [129] Coley, C. W.; Thomas D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K, F. Science 2019, 365, eaax1566. [130] Chatterjee, S.; Guidi, M.; Seeberger, P. H.; Gilmore. K. Nature 2020, 579, 379. [131] (a) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. J. Med. Chem. 2012, 55, 6582. (b) Sun, J.; Jeliazkova, N.; Chupakhin, V.; Golib-Dzib, J.-F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans, H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. J. Cheminf. 2017, 9, 17. [132] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Li, F.-F. Int. J. Comput. Vision 2015, 115, 211. [133] Miller, G. A. Commun. ACM 1995, 38, 39. [134] Wu, Z.; Ramsundar, B.; Feinberg, Evan N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V. Chem. Sci. 2018, 9, 513. [135] Kitchin, J. R. Nat. Cat. 2018, 1, 230. [136] Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73. [137] Struble, T. J.; Alvarez, J. C.; Brown, S. P.; Chytil, M.; Cisar, J.; DesJarlais, R. L.; Engkvist, O,; Frank, S. A.; Greve, D. R.; Griffin, D. J.; Hou, X. J.; Johannes, J. W.; Kreatsoulas, C.; Lahue, B.; Mathea, M.; Mogk, G.; Nicolaou, C. A.; Palmer, A. D.; Price, D. J.; Robinson, R. I.; Salentin, S.; Xing, L.; Jaakkola, T.; Green, W. H.; Barzilay, R.; Coley, C. W.; Jensen, K. F. J. Med. Chem. 2020, 63, 8667. [138] Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Nat. Commun. 2018, 9, 3406. [139] (a) Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C.-X.; Jensen, K. F.; Porco, J. A. Jr.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169. (b) Heublein, N.; Moore, J. S.; Smith, C. D.; Jensen, K. F. RSV Adv. 2014, 4, 63627. (c) Weber, A.; von Roedern, E.; Stilz, H. U. J. Comb. Chem. 2005, 7, 178. [140] Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, A. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.:Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2224~2232. [141] Jankowski, N., Duch, W.; Gra̧bczewski, K. Meta-Learning in Computational Intelligence, Springer, Berlin, 2011. [142] Graves, A.; Wayne, G.; Danihelka, I. arXiv e-prints 2014, arXiv:1410.5401. [143] Duan, Y.; Andrychowicz, M.; Stadie, B. C.; Ho, J.; Schneider, J.; Sutskever, I.; Abbeel, P.; Zaremba W. In Advances in Neural Information Processing Systems 30, Neural Information Processing Systems 2017, Eds.:Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Neural Information Processing Systems, 2017, pp. 1087~1098. [144] Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Science 2015, 350, 1332. [145] Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. In Advances in Neural Information Processing Systems 29, Neural Information Processing Systems 2016, Eds.:Lee, D.; Sugiyama, M.; Luxburg, U.; Guyon, I.; Garnett, R., Neural Information Processing Systems, 2016, pp. 3630~3638. [146] Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. ACS Cent. Sci. 2017, 3, 283. [147] (a) Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. In Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research Series 48, Eds.:Balcan, M. F.; Weinberger, K. Q., Proceedings of Machine Learning Research, New York, 2016, pp. 1842~1850. (b) Ha, H.; Hwang, U.; Hong, Y.; Yoon, S. arXiv e-prints 2018. arXiv:1805.10768. |
[1] | 陈淇, 陈思鸿, 吴汉清, 曾晓晴, 陈伟清, 孙国星, 汪朝阳. 2-氨基吡啶在构建五元、六元氮稠环合成中的应用[J]. 有机化学, 2021, 41(9): 3482-3491. |
[2] | 谭胖, 刘旭红, 谌彤童, 秦智慧, 杨涛, 刘晓彤, 刘秀磊. 机器学习设计新型有机分子研究进展[J]. 有机化学, 2021, 41(7): 2666-2675. |
[3] | 杨凯, 姚辰, 高娟娟, 陈思鸿, 郑雪洁, 邓璐璇, 张毓娜, 刘美娟, 汪朝阳. 稠杂环吡啶并[1,2-a]苯并咪唑类化合物的合成研究进展[J]. 有机化学, 2020, 40(12): 4168-4183. |
[4] | 张复兴,邝代治,冯泳兰,许志峰,王剑秋. 三(邻氯苄基)氯化锡的合成、结构和量子化学研究[J]. 有机化学, 2003, 23(6): 604-608. |
[5] | 邓克俭,韩世刚,Dieter Klapstein. 二氮双环阳离子游离基中N,N'-三电子键[J]. 有机化学, 2001, 21(8): 618-621. |
[6] | 毛淑才,余向阳,沈勇,郑康成. 苯酚-酰胺系列氢键复合物从头计算研究[J]. 有机化学, 2000, 20(2): 243-247. |
[7] | 郑康成,黄加多,许植涛,沈勇. 三硝基苯-对位取代苯酚负离子荷移复合物从头算研究[J]. 有机化学, 1999, 19(4): 379-384. |
[8] | 易行焕,易雪枫,贡雪东,肖鹤鸣. 环己硅烷类液晶化合物的量子化学研究: 联苯基乙烷类系列[J]. 有机化学, 1998, 18(4): 315-319. |
[9] | 湛昌国. 含S-P-N键的磷烯正离子及其相关物的结构和性质的从头计算[J]. 有机化学, 1995, 15(3): 239-244. |
[10] | 刘元隆,钮泽富,潘道皑. 烷基锂分子中化学键的 ab initio 研究[J]. 有机化学, 1994, 14(2): 142-148. |
[11] | 薛价猷,邵瑞链. 环式结构体系中的双碳正离子[J]. 有机化学, 1991, 11(3): 225-232. |
[12] | 唐敖庆. 具有重复单元的共轭分子的量子化学计算及其应用(下)[J]. 有机化学, 1984, 4(2): 129-134. |
[13] | 唐敖庆. 具有重复单元的共轭分子的量子化学计算及其应用(上)[J]. 有机化学, 1984, 4(1): 45-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||