有机化学 ›› 2021, Vol. 41 ›› Issue (2): 819-825.DOI: 10.6023/202004018 上一篇 下一篇
研究论文
韩超a,*(), 聂磊a, 韩晓b, 张岩a, 孙克磊a, 石磊a, 崔广华a, 孟伟a,*()
收稿日期:
2020-04-12
修回日期:
2020-06-17
发布日期:
2020-09-29
通讯作者:
韩超, 孟伟
作者简介:
基金资助:
Chao Hana,*(), Lei Niea, Xiao Hanb, Yan Zhanga, Kelei Suna, Lei Shia, Guanghua Cuia, Wei Menga,*()
Received:
2020-04-12
Revised:
2020-06-17
Published:
2020-09-29
Contact:
Chao Han, Wei Meng
Supported by:
文章分享
以特氨酸、邻苯二胺和芳香醛为原料, 乙醇为溶剂, 对甲苯磺酸为催化剂, 多组分一锅法构建了一系列含有吡咯烷酮的1,5-苯并二氮杂?类化合物. 该方法反应条件温和, 操作简单, 产物收率高. 探索了抗牛病毒性腹泻病毒(BVDV)病毒活性, 结果显示合成的苯二氮?类衍生物具有显著的抗BVDV活性, EC50值好, 且无明显的细胞毒性, 为抗BVDV制剂的研究提供了有意义的参考物.
韩超, 聂磊, 韩晓, 张岩, 孙克磊, 石磊, 崔广华, 孟伟. “一锅”三组分合成新型1,5-苯并二氮杂䓬类化合物与抗牛病毒性腹泻病毒(BVDV)活性[J]. 有机化学, 2021, 41(2): 819-825.
Chao Han, Lei Nie, Xiao Han, Yan Zhang, Kelei Sun, Lei Shi, Guanghua Cui, Wei Meng. One-Pot Three-Component Synthesis of Novel 1,5-Benzodiazepine Derivatives and Their anti-BVDV (Bovine Viral Diarrhea Virus) Activity[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 819-825.
Entry | Catalystb | T/℃ | Time/h | Yieldc/% |
---|---|---|---|---|
1 | No | 40 | 6 | 10 |
2 | p-TSA | 40 | 3 | 81 |
3 | AcOH | 40 | 3 | 73 |
4 | CF3CO2H | 40 | 3 | 69 |
5 | HCl | 40 | 3 | 60 |
6 | H2SO4 | 40 | 3 | 53 |
7 | CH3SO3H | 40 | 3 | 65 |
8 | HCO2H | 40 | 3 | 55 |
9 | AlCl3 | 40 | 3 | 41 |
10 | FeCl3 | 40 | 3 | 32 |
11 | BF3?Et2O | 40 | 3 | 30 |
Entry | Catalystb | T/℃ | Time/h | Yieldc/% |
---|---|---|---|---|
1 | No | 40 | 6 | 10 |
2 | p-TSA | 40 | 3 | 81 |
3 | AcOH | 40 | 3 | 73 |
4 | CF3CO2H | 40 | 3 | 69 |
5 | HCl | 40 | 3 | 60 |
6 | H2SO4 | 40 | 3 | 53 |
7 | CH3SO3H | 40 | 3 | 65 |
8 | HCO2H | 40 | 3 | 55 |
9 | AlCl3 | 40 | 3 | 41 |
10 | FeCl3 | 40 | 3 | 32 |
11 | BF3?Et2O | 40 | 3 | 30 |
Entry | Solvent | p-TSA/mol% | Time/h | Yieldb/% |
---|---|---|---|---|
1 | No | 20 | 5 | 5 |
2 | H2O | 20 | 3 | 20 |
3 | EtOH | 20 | 3 | 81 |
4 | Toluene | 20 | 3 | 50 |
5 | MeOH | 20 | 3 | 71 |
6 | i-PrOH | 20 | 3 | 64 |
7 | CH3CN | 20 | 3 | 52 |
8 | THF | 20 | 3 | 55 |
9 | CHCl3 | 20 | 3 | 61 |
10 | DMF | 20 | 3 | 46 |
11 | Dioxane | 20 | 3 | 58 |
12 | EtOH | 30 | 3 | 82 |
13 | EtOH | 15 | 3 | 81 |
14 | EtOH | 10 | 3 | 72 |
Entry | Solvent | p-TSA/mol% | Time/h | Yieldb/% |
---|---|---|---|---|
1 | No | 20 | 5 | 5 |
2 | H2O | 20 | 3 | 20 |
3 | EtOH | 20 | 3 | 81 |
4 | Toluene | 20 | 3 | 50 |
5 | MeOH | 20 | 3 | 71 |
6 | i-PrOH | 20 | 3 | 64 |
7 | CH3CN | 20 | 3 | 52 |
8 | THF | 20 | 3 | 55 |
9 | CHCl3 | 20 | 3 | 61 |
10 | DMF | 20 | 3 | 46 |
11 | Dioxane | 20 | 3 | 58 |
12 | EtOH | 30 | 3 | 82 |
13 | EtOH | 15 | 3 | 81 |
14 | EtOH | 10 | 3 | 72 |
Entry | Compd. | R1 | R2 | R3 | Yielda/% | Drb |
---|---|---|---|---|---|---|
1 | 4a | Bn | H | H | 88 | 18∶1 |
2 | 4b | Bn | H | 3-OH | 82 | 16∶1 |
3 | 4c | Bn | H | 2-OMe | 86 | 15∶1 |
4 | 4d | Bn | H | 4-OH | 87 | 16∶1 |
5 | 4e | Bn | H | 3,4-(OMe)2 | 85 | >20∶1 |
6 | 4f | Bn | H | 4-Br | 86 | 9∶1 |
7 | 4g | Bn | H | 4-NMe2 | 83 | >20∶1 |
8 | 4h | Bn | H | 4-F | 86 | 8∶1 |
9 | 4i | Bn | H | 2-NO2 | 86 | >20∶1 |
10 | 4j | H | Bn | H | 87 | —c |
11 | 4k | H | Bn | 2-OMe | 87 | —c |
12 | 4l | H | Bn | 4-Cl | 81 | —c |
13 | 4m | H | Bn | 3-OH | 85 | —c |
14 | 4n | H | Bn | 2-NO2 | 81 | —c |
15 | 4o | H | Bn | 4-NMe2 | 82 | —c |
16 | 4p | H | Bn | 4-Br | 80 | —c |
17 | 4q | H | Bn | 4-NO2 | 80 | —c |
Entry | Compd. | R1 | R2 | R3 | Yielda/% | Drb |
---|---|---|---|---|---|---|
1 | 4a | Bn | H | H | 88 | 18∶1 |
2 | 4b | Bn | H | 3-OH | 82 | 16∶1 |
3 | 4c | Bn | H | 2-OMe | 86 | 15∶1 |
4 | 4d | Bn | H | 4-OH | 87 | 16∶1 |
5 | 4e | Bn | H | 3,4-(OMe)2 | 85 | >20∶1 |
6 | 4f | Bn | H | 4-Br | 86 | 9∶1 |
7 | 4g | Bn | H | 4-NMe2 | 83 | >20∶1 |
8 | 4h | Bn | H | 4-F | 86 | 8∶1 |
9 | 4i | Bn | H | 2-NO2 | 86 | >20∶1 |
10 | 4j | H | Bn | H | 87 | —c |
11 | 4k | H | Bn | 2-OMe | 87 | —c |
12 | 4l | H | Bn | 4-Cl | 81 | —c |
13 | 4m | H | Bn | 3-OH | 85 | —c |
14 | 4n | H | Bn | 2-NO2 | 81 | —c |
15 | 4o | H | Bn | 4-NMe2 | 82 | —c |
16 | 4p | H | Bn | 4-Br | 80 | —c |
17 | 4q | H | Bn | 4-NO2 | 80 | —c |
Compd. | R1 | R2 | R3 | EC50a / (μmol?L–1) | CC50b/ (μmol?L–1) |
---|---|---|---|---|---|
4a | Bn | H | H | 1.25 | >20 |
4b | Bn | H | 3-OH | >1.30 | —c |
4c | Bn | H | 2-OMe | 0.20 | >20 |
4d | Bn | H | 4-OH | >1.30 | —c |
4e | Bn | H | 3,4-(OMe)2 | 0.25 | Nod |
4f | Bn | H | 4-Br | >1.30 | No |
4g | Bn | H | 4-NMe2 | 0.12 | No |
4h | Bn | H | 4-F | >1.30 | No |
4i | Bn | H | 2-NO2 | >1.30 | >20 |
4j | H | Bn | H | 1.50 | >20 |
4k | H | Bn | 2-OMe | 0.28 | No |
4l | H | Bn | 4-Cl | >1.3 | >20 |
4m | H | Bn | 3-OH | >1.3 | —c |
4n | H | Bn | 2-NO2 | >1.30 | >20 |
4o | H | Bn | 4-NMe2 | 0.25 | No |
4p | H | Bn | 4-Br | >1.3 | >20 |
4q | H | Bn | 4-NO2 | >1.30 | >20 |
Ribavirin | 1.30 | 5.08 |
Compd. | R1 | R2 | R3 | EC50a / (μmol?L–1) | CC50b/ (μmol?L–1) |
---|---|---|---|---|---|
4a | Bn | H | H | 1.25 | >20 |
4b | Bn | H | 3-OH | >1.30 | —c |
4c | Bn | H | 2-OMe | 0.20 | >20 |
4d | Bn | H | 4-OH | >1.30 | —c |
4e | Bn | H | 3,4-(OMe)2 | 0.25 | Nod |
4f | Bn | H | 4-Br | >1.30 | No |
4g | Bn | H | 4-NMe2 | 0.12 | No |
4h | Bn | H | 4-F | >1.30 | No |
4i | Bn | H | 2-NO2 | >1.30 | >20 |
4j | H | Bn | H | 1.50 | >20 |
4k | H | Bn | 2-OMe | 0.28 | No |
4l | H | Bn | 4-Cl | >1.3 | >20 |
4m | H | Bn | 3-OH | >1.3 | —c |
4n | H | Bn | 2-NO2 | >1.30 | >20 |
4o | H | Bn | 4-NMe2 | 0.25 | No |
4p | H | Bn | 4-Br | >1.3 | >20 |
4q | H | Bn | 4-NO2 | >1.30 | >20 |
Ribavirin | 1.30 | 5.08 |
[1] |
Han C.; Guo Y.-C.; Wang D.-D.; Dai X.-J.; Wu F.-J.; Liu H.-F.; Dai G.-F.; Tao J.-C. Chin. Chem. Lett. 2015, 26, 534.
doi: 10.1016/j.cclet.2015.01.006 |
[2] |
Freedman H.; Logan M.R.; Law J. K. M.; Houghton M.ACS Infect. Dis. 2016, 2, 749.
pmid: 27933781 |
[3] |
Wetzel D.; Barbian A.; Jenzelewski V.; Schembecker G.; Merz J.; Michael Piontek, M.J. Biotechnol. 2019, 306, 203.
doi: 10.1016/j.jbiotec.2019.10.008 pmid: WOS:000496193800025 |
[4] |
Darweesh M.F.; Rajput M. K. S.; Braun L.J.; Rohila J.S.; Chase C. C. L.Microb. Pathog. 2018, 121, 341.
doi: 10.1016/j.micpath.2018.05.047 |
[5] |
(a) Buckwold V.E.; Wei J.; Wenzel-Mathers M.; Russell J. Antimicrob. Agents Chemother. 2003, 47, 2293.
doi: 10.1128/AAC.47.7.2293-2298.2003 |
(b) Yanagida K.; Baba C.; Baba M. Antiviral Res. 2004, 64, 195.
doi: 10.1016/j.antiviral.2004.09.001 |
|
[6] |
Wang L.-Z.; Hua Z.-X.; Niu W.-G. Chin. J. Org. Chem. 2010, 30, 1664. (in Chinese)
pmid: DD15F2D5-4AAC-42E8-809D-64ADCD34AD2D |
王兰芝, 花中霞, 牛文刚, 有机化学, 2010, 30, 1664.).
pmid: DD15F2D5-4AAC-42E8-809D-64ADCD34AD2D |
|
[7] |
Yin L.-Y.; Wang L.-Z.; Li X.-Q.; An Y.-S. Chin. J. Org. Chem. 2016, 36, 711. (in Chinese)
doi: 10.6023/cjoc201510002 pmid: 00FB0F05-D58F-4B72-B639-DE4A1E047785 |
尹刘燕, 王兰芝, 李晓庆, 安迎双, 有机化学, 2016, 36, 711.).
doi: 10.6023/cjoc201510002 pmid: 00FB0F05-D58F-4B72-B639-DE4A1E047785 |
|
[8] |
Thurston D.E.; Bose D.S.; Thompson A.S.; Howard P.W.; Leoni A.: Croker, S. J.; Jenkins, T.C.; Neidle, S.; Hartley, J.A.; Hurley, L.H.J. Org. Chem. 1996, 61, 8141.
doi: 10.1021/jo951631s |
[9] |
Jaafar Z.; Chniti S.; Sassi A.B.; Dziri H.; Marque S.; Lecouvey M.; Gharbi R.; Msaddek M. J. Mol. Struct. 2019, 1195, 689.
doi: 10.1016/j.molstruc.2019.06.018 |
[10] |
(a) Drummer O.H. Forensic Sci. Rev. 2002, 14, 1.
doi: FSRv14n1【-逻*辑*与-】amp;2-1 pmid: 15352779 |
(b) Hadjipavlou-Litina D.; Garg R.; Hansch C. Chem. Rev. 2004, 104, 3751.
pmid: 15352779 |
|
[11] |
Grossi G.; Braccio M. D.; Roma, G.; Ballabeni, V.; Tognolini, M.; Calcina, F.; Barocelli, E.Eur. J. Med. Chem. 2002, 37, 933.
doi: 10.1016/S0223-5234(02)01400-9 |
[12] |
Adegoke O.A.; Thomas O.E.; Makanjuola D.M.; Adewole O.O. J. Taibah Univ. Sci. 2014, 8, 248.
doi: 10.1016/j.jtusci.2014.03.007 |
[13] |
Kruse H. Drug Dev. Res. 1982, 2, 145.
doi: 10.1002/(ISSN)1098-2299 |
[14] |
Nicholson A.N.; Stone B.M.; Clarke C. H. J.Clin. Pharmacol. 1977, 4, 567.
|
[15] |
Vendeville S.; Vandyck K.; Broeck W.V.; Boutton C.W.; Bondt H.D.; Quirynen L.; Amssoms K.; Bonfanti J.F.; Last S.; Rombauts K.; Tahri A.; Hu L.L.; Delouvroy F.; Vermeiren K.; Vandercruyssen G.; Helm L.V.; Cleiren E.; Mostmans W.; Lory P.; Pille G.; Emelen K.V.; Fanning G.; Pauwels F.; Lin T.; Simmen K.; Raboisson P. Bioorg. Med. Chem. Lett. 2009, 19, 2492.
doi: 10.1016/j.bmcl.2009.03.035 |
[16] |
Nyanguile O.; Pauwels F.; Van den Broeck W.; Boutton C.W.; Quirynen L.; Ivens T.; Van der Helm L.; Vandercruyssen G.; Mostmans W.; Delouvroy F.; Dehertogh P.; Cummings M.D.; Bonfanti J.-F.; Simmen K.A.; Raboisson P. Antimicrob. Agents Chemother. 2008, 52, 4420.
doi: 10.1128/AAC.00669-08 |
[17] |
Lu L.-Q.; Chen J.-R.; Xiao W.-J. Acc. Chem. Res. 2012, 45, 1278.
doi: 10.1021/ar200338s |
[18] |
Li X.-M.; Jia X.-S.; Yin L. Chin. J. Org. Chem. 2017, 37, 2237. (in Chinese)
doi: 10.6023/cjoc201704026 pmid: C14FB5E8-E012-4110-B56C-6DE13DD77A32 |
李修明, 贾学顺, 殷亮, 有机化学, 2017, 37, 2237.).
doi: 10.6023/cjoc201704026 pmid: C14FB5E8-E012-4110-B56C-6DE13DD77A32 |
|
[19] |
Liu B.-Y.; Xu X.-J.; Huang L.-L.; Feng H.-D. Chin. J. Org. Chem. 2020, 40, 1. (in Chinese)
doi: 10.6023/cjoc201907028 |
刘博瑜, 徐仙君, 黄立梁, 冯煌迪, 有机化学, 2020, 40, 1.).
|
|
[20] |
Zhang M.; Liu Y.-H.; Shang Z.-R.; Hu H.-C.; Zhang Z.-H. Catal. Commun. 2017, 88, 39.
doi: 10.1016/j.catcom.2016.09.028 |
[21] |
Deng J.; Mo L.-P.; Zhao F.-Y.; Hou L.-L.; Yang L.; Zhang Z.-H. Green Chem. 2011, 13, 2576.
doi: 10.1039/c1gc15470b |
[22] |
Toure B.B.; Hall D.G. Chem. Rev. 2009, 109, 4439.
doi: 10.1021/cr800296p |
[23] |
Ramon D.J.; Yus M. Angew. Chem., Int. Ed. 2005, 44, 1602.
doi: 10.1002/anie.200460548 |
[24] |
Royles B. J. L.Chem. Rev. 1995, 95, 1981;.
doi: 10.1021/cr00038a009 |
[25] |
Schobert R.; Schlenk A. Bioorg. Med. Chem. 2008, 16, 4203;.
doi: 10.1016/j.bmc.2008.02.069 |
[26] |
Jeong Y.C.; Moloney M.G. Beilstein J. Org. Chem. 2013, 9, 1899.
doi: 10.3762/bjoc.9.224 |
[27] |
(a) Ishida T.; Kobayashi R.; Yamada T. Org. Lett. 2014, 16, 2430;.
doi: 10.1021/ol500806u |
(b) Huang P.Q.; W.; Ye, J.L.Chin. J. Chem. 2015, 33, 655.
doi: 10.1002/cjoc.201400762 |
|
[28] |
Sorokina I.K.; Alekseeva L.M.; Pashin V.A.; Asnina V.V.; Yuzhakov S.D.; Parimbetova R.B.; Granik V.G. Pharm. Chem. J. 1991, 25, 768.
doi: 10.1007/BF00767253 |
[1] | 郑露露, 王雨晴, 李小港, 张文彬. 低共熔溶剂/苯磺酸: 通过Biginelli反应合成二氢嘧啶酮类化合物的环境友好催化体系[J]. 有机化学, 2022, 42(11): 3714-3720. |
[2] | 李鑫玲, 刘会丽, 张顺吉. 炔丙醇与烯醇硅醚的直接亲核取代反应[J]. 有机化学, 2021, 41(1): 407-411. |
[3] | 孔庆山, 李兴龙, 许华建, 傅尧. 锆基路易斯酸催化γ-戊内酯与胺的反应研究[J]. 有机化学, 2020, 40(7): 2062-2070. |
[4] | 李哲健, 高宝, 黄汉民. 铵盐与酰氯的酰胺化合成伯酰胺[J]. 有机化学, 2018, 38(6): 1431-1436. |
[5] | 华迎春, 贺斌, 秦之焱, 王松, 刘慧萍, 刘丰五. 吗啉核苷类似物及其磺胺衍生物的合成及初步抗牛病毒性腹泻病毒(BVDV)活性研究[J]. 有机化学, 2018, 38(5): 1147-1154. |
[6] | 田金金, 郭红云, 邵鸿斌. 酸性离子液体催化下一锅三组分反应合成N-(2-羟基-1-萘基)(苯基)甲基-吡咯烷-2-酮衍生物[J]. 有机化学, 2011, 31(11): 1909-1913. |
[7] | 张娇霞, 郑亚萍, 兰岚, 于培盈, 石伟, 李江洪, 檀雨默. 具有表面活性的功能化离子液体N-(三甲氧硅丙基)-N-甲基-2-吡咯烷酮盐酸盐的合成与表征[J]. 有机化学, 2011, 31(07): 1076-1080. |
[8] | 刘流,张海涛,王云普. 水溶性高负责担载二茂铁希夫碱与DNA的作用[J]. 有机化学, 2003, 23(6): 570-573. |
[9] | 李夏,梁燕,郑向军,梅毓华. 氨基酸衍生物PMV,PML和PMA的电喷雾质谱研究[J]. 有机化学, 2003, 23(11): 1277-1281. |
[10] | 罗云富,李援朝. 手性邻二醇--(2S,3R)-1,2,3-丁三醇-1-对甲苯磺酸酯的不对称合成[J]. 有机化学, 2002, 22(4): 262-264. |
[11] | 刘流,张海涛,王云普. 水溶性高分子担载二茂铁希夫碱的合成[J]. 有机化学, 2002, 22(4): 286-288. |
[12] | 郑云红,夏奕,杨征宇,张倩,陈瑛,夏鹏. 8,9-二氢-2H-吡喃并[5,6-g]喹啉-2-酮衍生物的合成[J]. 有机化学, 2001, 21(3): 231-234. |
[13] | 黄培强. 基于苹果酰亚胺的不对称合成方法学研究进展[J]. 有机化学, 2001, 21(11): 1065-1073. |
[14] | 黄培强,蓝洪桥,陈明德,张洪奎. 环状酰亚胺不对称还原烷基化的一些结果[J]. 有机化学, 2000, 20(5): 790-794. |
[15] | 石鸿昌. 由Diels-Alder反应合成四氢咔唑[J]. 有机化学, 1998, 18(6): 567-571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||