有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3714-3720.DOI: 10.6023/cjoc202206002 上一篇 下一篇
研究论文
收稿日期:
2022-06-02
修回日期:
2022-07-12
发布日期:
2022-08-10
通讯作者:
李小港
基金资助:
Lulu Zheng, Yuqing Wang, Xiaogang Li(), Wenbin Zhang
Received:
2022-06-02
Revised:
2022-07-12
Published:
2022-08-10
Contact:
Xiaogang Li
Supported by:
文章分享
在氯化胆碱和乙二醇组成的低共熔溶剂中, 苯磺酸催化下的Biginelli反应合成二氢嘧啶酮类化合物, 反应选择性高、产物易于分离、反应条件温和. 在较低温度下(50 ℃), 反应10.0 h, 得到94%的收率, 通过简单过滤产物即可分离, 且纯度较高. 该催化体系可以循环利用, 在此反应过程中催化剂、溶剂和没有反应的原料, 不需要进一步分离就可以进入下一次反应过程. 实验结果表明, 该催化体系循环利用8次后催化性能没有明显降低. 该反应体系对F、Cl、OMe、CH3和CH3CONH基团具有较好的容忍性, 共合成了20个产物, 收率79%~99%.
郑露露, 王雨晴, 李小港, 张文彬. 低共熔溶剂/苯磺酸: 通过Biginelli反应合成二氢嘧啶酮类化合物的环境友好催化体系[J]. 有机化学, 2022, 42(11): 3714-3720.
Lulu Zheng, Yuqing Wang, Xiaogang Li, Wenbin Zhang. Deep Eutectic Solvent/Benzenesulfonic Acid: An Environmental Friendly Catalyst System towards the Synthesis of Dihydropyrimidinones via Biginelli Reaction[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3714-3720.
Entrya | Temperature/℃ | Solution (mL) | Time/h | Catalyst (mol%) | Yieldb/% |
---|---|---|---|---|---|
1 | 50 | EtOH (2.5) | 2.0 | p-TSA (10) | 62 |
2 | 50 | EG (2.5) | 2.0 | p-TSA (10) | 55 |
3 | 50 | DES (2.5) | 2.0 | p-TSA (10) | 83 |
4 | 50 | DES (2.5) | 2.0 | — | 6 |
5 | 50 | DES (2.5) | 2.0 | C6H5SO2OH (10) | 80 |
6 | 50 | DES (2.5) | 2.0 | 3-O2NC6H4SO2OH (10) | 82 |
7 | 50 | DES (2.5) | 4.0 | p-TSA (10) | 90 |
8 | 50 | DES (2.5) | 6.0 | p-TSA (10) | 93 |
9 | 50 | DES (2.5) | 10.0 | p-TSA (10) | 94 |
10 | 50 | DES (2.5) | 6.0 | p-TSA (5) | 72 |
11 | 50 | DES (2.5) | 6.0 | p-TSA (20) | 91 |
12 | 50 | DES (2.5) | 6.0 | p-TSA (30) | 89 |
13 | 70 | DES (2.5) | 6.0 | p-TSA (10) | 91 |
14 | 40 | DES (2.5) | 6.0 | p-TSA (10) | 74 |
15 | 30 | DES (2.5) | 6.0 | p-TSA (10) | 27 |
Entrya | Temperature/℃ | Solution (mL) | Time/h | Catalyst (mol%) | Yieldb/% |
---|---|---|---|---|---|
1 | 50 | EtOH (2.5) | 2.0 | p-TSA (10) | 62 |
2 | 50 | EG (2.5) | 2.0 | p-TSA (10) | 55 |
3 | 50 | DES (2.5) | 2.0 | p-TSA (10) | 83 |
4 | 50 | DES (2.5) | 2.0 | — | 6 |
5 | 50 | DES (2.5) | 2.0 | C6H5SO2OH (10) | 80 |
6 | 50 | DES (2.5) | 2.0 | 3-O2NC6H4SO2OH (10) | 82 |
7 | 50 | DES (2.5) | 4.0 | p-TSA (10) | 90 |
8 | 50 | DES (2.5) | 6.0 | p-TSA (10) | 93 |
9 | 50 | DES (2.5) | 10.0 | p-TSA (10) | 94 |
10 | 50 | DES (2.5) | 6.0 | p-TSA (5) | 72 |
11 | 50 | DES (2.5) | 6.0 | p-TSA (20) | 91 |
12 | 50 | DES (2.5) | 6.0 | p-TSA (30) | 89 |
13 | 70 | DES (2.5) | 6.0 | p-TSA (10) | 91 |
14 | 40 | DES (2.5) | 6.0 | p-TSA (10) | 74 |
15 | 30 | DES (2.5) | 6.0 | p-TSA (10) | 27 |
Entrya | R1 (1) | R2 (2) | R1/R2 (3) | Yieldb/% |
---|---|---|---|---|
1 | H (1a) | C2H5O (2a) | H/C2H5O (3a) | 94 |
2 | Cl (1b) | C2H5O (2b) | Cl/C2H5O (3b) | 91 |
3 | F (1c) | C2H5O (2c) | F/C2H5O (3c) | 97 |
4 | 2,4-F2 (1d) | C2H5O (2d) | 2,4-F2/C2H5O (3d) | 97 |
5 | CH3O (1e) | C2H5O (2e) | CH3O/C2H5O (3e) | 96 |
6 | NO2 (1f) | C2H5O (2f) | NO2/C2H5O (3f) | 93 |
7 | CH3 (1g) | C2H5O (2g) | CH3/C2H5O (3g) | 97 |
8 | CH3CONH (1h) | C2H5O (2h) | CH3CONH/C2H5O (3h) | 90 |
9 | CN (1i) | C2H5O (2i) | CN/C2H5O (3i) | 95 |
10 | Br (1j) | C2H5O (2j) | Br/C2H5O (3j) | 97 |
11 | H (1k) | CH3 (2k) | H/CH3 (3k) | 86 |
12 | Cl (1l) | CH3 (2l) | Cl/CH3 (3l) | 94 |
13 | F (1m) | CH3 (2m) | F/CH3 (3m) | 89 |
14 | 2,4-F2 (1n) | CH3 (2n) | 2,4-F2/CH3 (3n) | 96 |
15 | CH3O (1o) | CH3 (2o) | CH3O/CH3 (3o) | 95 |
16 | NO2 (1p) | CH3 (2p) | NO2/CH3 (3p) | 79 |
17 | CH3 (1q) | CH3 (2q) | CH3/CH3 (3q) | 97 |
18 | CH3CONH (1r) | CH3 (2r) | CH3CONH/CH3 (3r) | 72 |
19 | CN (1s) | CH3 (2s) | CN/CH3 (3s) | 85 |
20 | Br (1t) | CH3 (2t) | Br/CH3 (3t) | 84 |
Entrya | R1 (1) | R2 (2) | R1/R2 (3) | Yieldb/% |
---|---|---|---|---|
1 | H (1a) | C2H5O (2a) | H/C2H5O (3a) | 94 |
2 | Cl (1b) | C2H5O (2b) | Cl/C2H5O (3b) | 91 |
3 | F (1c) | C2H5O (2c) | F/C2H5O (3c) | 97 |
4 | 2,4-F2 (1d) | C2H5O (2d) | 2,4-F2/C2H5O (3d) | 97 |
5 | CH3O (1e) | C2H5O (2e) | CH3O/C2H5O (3e) | 96 |
6 | NO2 (1f) | C2H5O (2f) | NO2/C2H5O (3f) | 93 |
7 | CH3 (1g) | C2H5O (2g) | CH3/C2H5O (3g) | 97 |
8 | CH3CONH (1h) | C2H5O (2h) | CH3CONH/C2H5O (3h) | 90 |
9 | CN (1i) | C2H5O (2i) | CN/C2H5O (3i) | 95 |
10 | Br (1j) | C2H5O (2j) | Br/C2H5O (3j) | 97 |
11 | H (1k) | CH3 (2k) | H/CH3 (3k) | 86 |
12 | Cl (1l) | CH3 (2l) | Cl/CH3 (3l) | 94 |
13 | F (1m) | CH3 (2m) | F/CH3 (3m) | 89 |
14 | 2,4-F2 (1n) | CH3 (2n) | 2,4-F2/CH3 (3n) | 96 |
15 | CH3O (1o) | CH3 (2o) | CH3O/CH3 (3o) | 95 |
16 | NO2 (1p) | CH3 (2p) | NO2/CH3 (3p) | 79 |
17 | CH3 (1q) | CH3 (2q) | CH3/CH3 (3q) | 97 |
18 | CH3CONH (1r) | CH3 (2r) | CH3CONH/CH3 (3r) | 72 |
19 | CN (1s) | CH3 (2s) | CN/CH3 (3s) | 85 |
20 | Br (1t) | CH3 (2t) | Br/CH3 (3t) | 84 |
[1] |
Liu, P.; Hao, J.; Mo, L.; Zhang, Z. H. RSC Adv. 2015, 5, 48675.
doi: 10.1039/C5RA05746A |
[2] |
Khandelwal, S.; Tailor, Y. K.; Kumar, M. J. Mol. Liq. 2016, 215, 345.
doi: 10.1016/j.molliq.2015.12.015 |
[3] |
(a) Abbot, A.; Capper, G.; Davies, D.; Munro, H.; Rasheed, R.; Tambyrajah, V. Chem. Commun. 2001, 19, 2010.
|
(b) Abbot, A.; Capper, G.; Davies, D.; Rasheed, R.; Ambyrajah, V. Chem. Commun. 2003, 1, 70.
doi: 10.1038/s42004-018-0071-6 |
|
(c) Abbot, A.; Capper, G.; Davies, D.; Rasheed, R.; Tambyrajah, V. J. Am. Chem. Soc. 2004, 126, 9142.
doi: 10.1021/ja048266j |
|
[4] |
Monte, D. F.; Carriazo, D.; Serrano, M.; Ferrer, M. L. ChemSusChem 2014, 7, 999.
doi: 10.1002/cssc.201300864 |
[5] |
(a) Shen, X.; Wen, J.; Mei, Q.; Chen, X.; Sun, D.; Yuan, T.; Sun, R. Green Chem. 2019, 21, 275.
doi: 10.1039/C8GC03064B |
(b) Kim, K. H.; Dutta, T.; Sun, J.; Simmon, B.; Singh, S. Green Chem. 2018, 20, 809.
doi: 10.1039/C7GC03029K |
|
[6] |
(a) Ge, X.; Gu, Ch.; Wang, X.; Tu, J. J. Mater. Chem. A 2017, 5, 8209.
doi: 10.1039/C7TA01659J |
(b) Wahlström, R.; Hiltunen, J.; Sirkka, N.; Vuoti, S.; Kruus, K. RSC Adv. 2016, 6, 68100.
doi: 10.1039/C6RA11719H |
|
[7] |
Hao, L.; Wang, M.; Shan, W.; Deng, C.; Ren, W.; Shi, Z.; Lu, H. J. Hazard. Mater. 2017, 339, 216.
doi: 10.1016/j.jhazmat.2017.06.050 |
[8] |
Panić, M.; Bubalo, M. C.; Redovniković, I. R. J. Chem. Technol. Biotechnol. 2020, 96, 14.
|
[9] |
(a) Ullah, R.; Atilhan, M.; Anaya, B.; Khraisheh, M.; García, G.; ElKhattat, A.; Aparicio, S. Phys. Chem. Chem. Phys. 2015, 17, 20941.
doi: 10.1039/c5cp03364k pmid: 26214080 |
(b) Shunkla, S. K.; Mikkola, J. P. Phys. Chem. Chem. Phys. 2018, 20, 24591.
doi: 10.1039/C8CP03724H pmid: 26214080 |
|
[10] |
Peeters, N.; Binnemans, K.; Riaño, S. Green Chem. 2020, 22, 4210.
doi: 10.1039/D0GC00940G |
[11] |
(a) Hillman, A. R.; Ryder, K. S.; Zaleski, C. J.; Ferreira, V.; Beasley, C. A.; Vieil, E. Electrochim. Acta 2014, 135, 42.
doi: 10.1016/j.electacta.2014.04.062 |
(b) Sebastian, P.; Valles, E.; Gomez, E. Electrochim. Acta 2014, 123, 285.
doi: 10.1016/j.electacta.2014.01.062 |
|
[12] |
Falco, G. D.; Porta, A.; Petrone, A.; Gaudio, M. P.; Hassanin, A. E.; Commodo, M.; Minutolo, P.; Squillace, A.; D'Anna, A. Environ. Sci.: Nano 2017, 4, 1095.
|
[13] |
Wang, A. L.; Xing, P. F.; Zheng, X. L.; Cao, H. Y.; Yang, G.; Zheng, X. F. RSC Adv. 2015, 5, 59022.
doi: 10.1039/C5RA08950F |
[14] |
Imperato, G.; Eibler, E.; Niedermaier, J. Chem. Commun. 2005, 9, 1170.
|
[15] |
Liu, S.; Ni, Y. X.; Wei, W. J.; Qiu, F. L.; Xu, S. L.; Ying, A. G. J. Chem. Res. 2014, 38, 186.
doi: 10.3184/174751914X13926483381319 |
[16] |
Wang, P.; Ma, F. P.; Zhang, Z. H. J. Mol. Liq. 2014, 198, 259.
doi: 10.1016/j.molliq.2014.07.015 |
[17] |
(a) Zhang, M.; Liu, Y. H.; Shang, Z. R.; Hua, H. C.; Zhang, Z. H. Catal. Commun. 2017, 88, 39.
doi: 10.1016/j.catcom.2016.09.028 |
(b) Ma, C. T.; Liu, P.; Wu, W.; Zhang, Z. H. J. Mol. Liq. 2017, 242, 606.
doi: 10.1016/j.molliq.2017.07.060 |
|
(c) Zhang, W. H.; Chen, M. N.; Hao, Y.; Jiang, X.; Zhou, X. L.; Zhang, Z. H. J. Mol. Liq. 2019, 278, 124.
doi: 10.1016/j.molliq.2019.01.065 |
|
[18] |
Stefanovic, R.; Ludwig, M.; Webber, G. B.; Atkin, R.; Page, A. J. Phys. Chem. Chem. Phys. 2017, 19, 3297.
doi: 10.1039/C6CP07932F |
[19] |
Crespo, E. A.; Silva, L. P.; Lloret, J. O.; Carvalho, P. J.; Vega, L. F.; Llovell, F.; Coutinho., J. A. P. Phys. Chem. Chem. Phys. 2019, 21, 15046.
doi: 10.1039/C9CP02548K |
[20] |
Wang, Y.; Hou, Y.; Wu, W.; Liu, D.; Ji, Y.; Ren, S. H. Green Chem. 2016, 18, 3089.
doi: 10.1039/C5GC02909K |
[21] |
(a) Atwal, K. S.; Swanson, B. N.; Unger, S. E. J. Med. Chem. 1991, 34, 806.
pmid: 1995904 |
(b) Sunna, V.; Summa, V.; Petrocchi, A; Matassa, V. G.; Gardelli, C.; Muraglia, E.; Rowley, M.; Gonzalez Paz, O.; Laufer, R.; Monteagudo, E.; Pace, P. J. Med. Chem. 2006, 49, 6646.
doi: 10.1021/jm060854f pmid: 1995904 |
|
(c) Kaan, H. Y. K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, O.; Kozielski, F. J. Med. Chem. 2010, 53, 5676.
doi: 10.1021/jm100421n pmid: 1995904 |
|
(d) Khaldi-Khellafi, N.; Makhloufi-Chebli, M.; Oukacha-Hikem, D.; Bouaziz, S. T.; Lamara, K. O.; Idir, T.; Benazzouz-Touami, A.; Dumas, F. J. Mol. Struct. 2019, 1181, 261.
doi: 10.1016/j.molstruc.2018.12.104 pmid: 1995904 |
|
[22] |
Biginelli, P. Gaza Chim. Ital. 1893, 23, 360.
|
[23] |
More, U. B. Asian J. Chem. 2012, 24, 1906.
|
[24] |
Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454.
doi: 10.1021/jo970846u |
[25] |
(a) Pasunooti, K. K.; Chai, H.; Jensen, C. N.; Gorityala, B.; Wang, S.; Liu, X. W. Tetrahedron Lett. 2011, 52, 80.
doi: 10.1016/j.tetlet.2010.10.150 |
(b) Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Tetrahedron Lett. 2003, 44, 3305.
doi: 10.1016/S0040-4039(03)00619-1 |
|
[26] |
(a) Damkaci, F.; Szymaniak, A. J. Chem. Educ. 2014, 91, 943.
doi: 10.1021/ed400390k |
(b) Wu, M.; Yu, J.; Zhao, W.; Wu, J.; Cao, S. J. Fluorine Chem. 2011, 132, 155.
doi: 10.1016/j.jfluchem.2010.12.010 |
|
[27] |
(a) Khabazzadeh, H.; Saidi, K.; Sheibani, H. Bioorg. Med. hem. Lett. 2008, 18, 278.
|
(b) Ranu, B.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 270.
|
|
[28] |
Debache, A.; Boumoud, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2006, 47, 5697.
doi: 10.1016/j.tetlet.2006.06.015 |
[29] |
Lima, C. G. S.; Silva, S.; GonÅalves, R. H.; Leite, E. R.; Schwab, R. S.; CorrÞa, G.; Paix, M. W. ChemCatChem 2014, 6, 3455.
doi: 10.1002/cctc.201402689 |
[30] |
(a) Saloutin, V. L.; Burgart, Y. V.; Kuzueva, O. G.; Kappe, C. O.; Chupakhin, O. N. J. Fluorine Chem. 2000, 103, 17.
doi: 10.1016/S0022-1139(99)00216-X |
(b) Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.; Yu, A. Molecules 1998, 3, 100.
doi: 10.3390/30300100 |
|
[31] |
Simeonova, S. P.; Afonsob, C. A. RSC Adv. 2016, 6, 5485.
doi: 10.1039/C5RA24558C |
[32] |
Zolfagharinia, S., Koukabi, N.; Eskandar, K. RSC Adv. 2016, 6, 113844.
doi: 10.1039/C6RA22791K |
[33] |
Ma, Y.; Qian, C. T.; Wang, L. M.; Yang, M. J. Org. Chem. 2000, 65, 3864
pmid: 10864778 |
[34] |
Hrirati, Z. D. H.; Shirini, F.; Shojaei, A. F. RSC Adv. 2016, 6, 67072
doi: 10.1039/C6RA11201C |
[35] |
Wang, D. C.; Guo, H. M.; Qu, G. R. Synth. Commun. 2010, 40, 1115.
doi: 10.1080/00397910903043009 |
[36] |
Zhang, G. L.; Cai, X. H. Synth. Commun. 2005, 35, 829.
doi: 10.1081/SCC-200050956 |
[37] |
Shirini, F.; Lati, M. P. J. Iran. Chem. Soc. 2017, 14, 75.
doi: 10.1007/s13738-016-0959-y |
[1] | 赵雯辛, 黄孟君, 李胜男, 刘玉静, 刘中秋, 应安国. SnCl2@MNPs催化Biginelli反应一锅法合成3,4-二氢嘧啶-2-酮衍生物[J]. 有机化学, 2021, 41(7): 2743-2749. |
[2] | 韩超, 聂磊, 韩晓, 张岩, 孙克磊, 石磊, 崔广华, 孟伟. “一锅”三组分合成新型1,5-苯并二氮杂䓬类化合物与抗牛病毒性腹泻病毒(BVDV)活性[J]. 有机化学, 2021, 41(2): 819-825. |
[3] | 李鑫玲, 刘会丽, 张顺吉. 炔丙醇与烯醇硅醚的直接亲核取代反应[J]. 有机化学, 2021, 41(1): 407-411. |
[4] | 张平竹, 王晓芬, 郑雪阳, 连平平, 魏超, 李小六. 氮杂环并二氢嘧啶及嘧啶衍生物的合成及生物活性评价[J]. 有机化学, 2018, 38(12): 3278-3285. |
[5] | 饶红红, 权正军, 白林, 叶鹤琳. 对映纯3,4-二氢嘧啶酮衍生物的合成研究进展[J]. 有机化学, 2016, 36(2): 283-296. |
[6] | 葛恬, 宋洁, 姚志刚, 徐凡. 三氯化铁催化Biginelli型反应合成芳亚甲基稠环嘧啶酮[J]. 有机化学, 2015, 35(7): 1570-1575. |
[7] | 李丽, 刘庆俭, 隋雪燕. C(5)-对甲基苯甲酰取代的3,4-二氢嘧啶(硫)酮类化合物的微波无溶剂合成[J]. 有机化学, 2014, 34(8): 1669-1672. |
[8] | 王晶, 丁丽, 肖笛, 薛思佳. 四氢吡啶并[4,3-d]二氢嘧啶酮衍生物的合成及其初步抗癌活性测定[J]. 有机化学, 2012, 32(11): 2187-2192. |
[9] | 王东超,袁腾飞,杨西宁,渠桂荣. 微波辐射下FeCl3•6H2O催化绿色合成3,4-二氢嘧啶-2-酮[J]. 有机化学, 2007, 27(08): 1034-1037. |
[10] | 李明,郭维斯,文丽荣,张秀丽. 新型无毒离子液体催化“一锅煮”合成3,4-二氢嘧啶-2(1H)-酮[J]. 有机化学, 2005, 25(9): 1062-1065. |
[11] | 张英群,王春,李贵深,李敬慈,刘卉敏,吴秋华. 可膨胀石墨催化的一锅法合成3,4-二氢嘧啶-2-酮衍生物[J]. 有机化学, 2005, 25(10): 1265-1267. |
[12] | 陈维一, 陆军. 高氯酸镁催化合成1,2,3,4-四氢嘧啶-2-酮[J]. 有机化学, 2004, 24(9): 1111-1113. |
[13] | 罗云富,李援朝. 手性邻二醇--(2S,3R)-1,2,3-丁三醇-1-对甲苯磺酸酯的不对称合成[J]. 有机化学, 2002, 22(4): 262-264. |
[14] | 彭家建,邓友全. 室温离子液体催化“一锅法”合成3, 4-二氢嘧啶-2-酮[J]. 有机化学, 2002, 22(1): 71-73. |
[15] | 郑云红,夏奕,杨征宇,张倩,陈瑛,夏鹏. 8,9-二氢-2H-吡喃并[5,6-g]喹啉-2-酮衍生物的合成[J]. 有机化学, 2001, 21(3): 231-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||