有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2810-2819.DOI: 10.6023/cjoc202102037 上一篇 下一篇
研究论文
收稿日期:
2021-02-21
修回日期:
2021-03-23
发布日期:
2021-04-12
通讯作者:
林彩霞, 袁耀锋
基金资助:
Gaige Zhu, Xiaohui Lai, Siyu Wang, Caixia Lin(), Yaofeng Yuan()
Received:
2021-02-21
Revised:
2021-03-23
Published:
2021-04-12
Contact:
Caixia Lin, Yaofeng Yuan
Supported by:
文章分享
报道了室温条件下磺酰叠氮、2-氨基苯甲醛、末端炔烃通过一价铜催化合成2-亚氨基-1,2-二氢喹啉化合物的方法. 该反应条件温和, 具有较好的底物普适性, 当更改底物炔烃的类型时, 可以选择控制不同产物的合成, 包括二氢喹啉和N-磺酰脒类化合物.
祝改革, 赖晓辉, 王思雨, 林彩霞, 袁耀锋. 铜催化合成2-亚氨基-1,2-二氢喹啉化合物[J]. 有机化学, 2021, 41(7): 2810-2819.
Gaige Zhu, Xiaohui Lai, Siyu Wang, Caixia Lin, Yaofeng Yuan. Synthesis of 2-Imino-1,2-dihydroquinolines via Copper Catalysis[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2810-2819.
Entrya | Catalyst | Base | Solvent | Yieldb/% |
---|---|---|---|---|
1 | CuI | TEA | DCM | 73 |
2 | CuBr | TEA | DCM | 78 |
3 | CuCl | TEA | DCM | 85 |
4 | CuCl2•2H2O | TEA | DCM | N.P.c |
5 | CuCl | K2CO3 | DCM | 27 |
6 | CuCl | Cs2CO3 | DCM | 23 |
7 | CuCl | Pyridine | DCM | 19 |
8 | CuCl | DIEA | DCM | 34 |
9 | CuCl | DBU | DCM | trace |
10 | CuCl | TEA | CH3CN | 73 |
11 | CuCl | TEA | DMF | 49 |
12 | CuCl | TEA | THF | 33 |
13 | CuCl | TEA | 1,4-Dioxane | 47 |
14 | CuCl | TEA | DCE | 66 |
15 | CuCl | — | DCM | N.P.c |
16 | — | TEA | DCM | N.P.c |
17 | CuCl | TEA (2 equiv.) | DCM | 85 |
18 | CuCl | TEA (0.5 equiv.) | DCM | 45 |
19 | CuCl (5 mol%) | TEA | DCM | 55 |
20 | CuCl (1 mol%) | TEA | DCM | 23 |
Entrya | Catalyst | Base | Solvent | Yieldb/% |
---|---|---|---|---|
1 | CuI | TEA | DCM | 73 |
2 | CuBr | TEA | DCM | 78 |
3 | CuCl | TEA | DCM | 85 |
4 | CuCl2•2H2O | TEA | DCM | N.P.c |
5 | CuCl | K2CO3 | DCM | 27 |
6 | CuCl | Cs2CO3 | DCM | 23 |
7 | CuCl | Pyridine | DCM | 19 |
8 | CuCl | DIEA | DCM | 34 |
9 | CuCl | DBU | DCM | trace |
10 | CuCl | TEA | CH3CN | 73 |
11 | CuCl | TEA | DMF | 49 |
12 | CuCl | TEA | THF | 33 |
13 | CuCl | TEA | 1,4-Dioxane | 47 |
14 | CuCl | TEA | DCE | 66 |
15 | CuCl | — | DCM | N.P.c |
16 | — | TEA | DCM | N.P.c |
17 | CuCl | TEA (2 equiv.) | DCM | 85 |
18 | CuCl | TEA (0.5 equiv.) | DCM | 45 |
19 | CuCl (5 mol%) | TEA | DCM | 55 |
20 | CuCl (1 mol%) | TEA | DCM | 23 |
[1] |
(a) Katritzky,A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52,15031.
doi: 10.1016/S0040-4020(96)00911-8 |
(b) Kariba,R. M.; Houghton,P. J.; Yenesew, A. J. Nat. Prod. 2002, 65,566.
doi: 10.1021/np010298m |
|
(c) Khadtare, N.; Stephani, R.; Korlipara, V. Bioorg. Med. Chem. Lett. 2017, 27,2281.
|
|
(d) Rabbani,S. M.I.M. Vahabpour, R. Hajimahdi, Z. Zarghi, A. Iran. J. Pharm. Res. 2019, 18,1790.
|
|
(e) Zhang,H. S.; Harmon, M.; Radoshitzky,S. R.; Soloveva, V.; Kane,C. D.; Duplantier,A. J.; Ogungbe,I. V. ACS Med. Chem. Lett. 2020, 11,2139.
doi: 10.1021/acsmedchemlett.0c00215 |
|
(f) Yang, Y.; Guo, J.; Liu,Z. Z. Chin. J. Org. Chem. 2019, 39,1913 (in Chinese).
doi: 10.6023/cjoc201810037 |
|
( 杨扬, 郭举, 刘站柱, 有机化学, 2019, 39,1913.)
|
|
(g) Gul,N. S.; Khan, T, M.; Liu,Y. C.; Choudhary,M. I.; Chen,Z. F.; Hong, L., CCS Chem. 2020, 2,1626.
|
|
[2] |
(a) Laurentiz,R. S.; Gomes,W. P.; Pissurno,A. P.R.; Santos,F. A.; Santos,V. C.O.; Martins,C. H.G. Med. Chem. Res. 2018, 27,1074.
doi: 10.1007/s00044-017-2129-x |
(b) Ushiyama, F.; Amada, H.; Takeuchi, T.; Tanaka-Yamamoto, N.; Kanazawa, H.; Nakano, K.; Mima, M.; Masuko, A.; Takata, I.; Hitaka, K.; Iwamoto, K.; Sugiyama, H.; Ohtake, N. ACS Omega 2020, 5,10145.
doi: 10.1021/acsomega.0c00865 |
|
(c) Chen, W.; Zuo,H. L.; Li,Y. X.; Liu, J.; Zhou,X. L. Chin. J. Org. Chem. 2019, 39,2317 (in Chinese).
doi: 10.6023/cjoc201905020 |
|
( 陈伟, 左怀龙, 李玉新, 刘江, 周先礼, 有机化学, 2019, 39,2317.)
|
|
(d) Yang, R.; Ma,Y. N.; Huang, T.; Xie, W.; Zhang, X.; Huang,G. S.; Liu,X. D. Chin. J. Org. Chem. 2018, 38,2143 (in Chinese).
doi: 10.6023/cjoc201801024 |
|
( 杨锐, 马艳妮, 黄婷, 解伟, 张霞, 黄国双, 刘小东, 有机化学, 2018, 38,2143.)
|
|
[3] |
Theeraladanon, C.; Arisawa, M.; Nishida, A.; Nakagawa, M. Tetrahedron 2004, 60,3017.
doi: 10.1016/j.tet.2004.01.084 |
[4] |
(a) Shahin,M. I.; Roy, J.; Hanafi, M.; Wang,D. Y.; Luesakul, U.; Chai,Y. F.; Muangsin, N.; Lasheen,D. S.; Abou El Ella,D. A.; Abouzid,K. A.; Neamati, N. Eur. J. Med. Chem. 2018, 155,516.
doi: 10.1016/j.ejmech.2018.05.042 |
(b) Tran,S. T.P.; Hipolito,C. J.; Suzuki, H.; Xie, R.; Kim Tuyen,H. D.; Dijke,P. T.; Terasaka, N.; Goto, Y.; Suga, H.; Kato, M. Biochem. Biophys. Res. Commun. 2019, 516,445.
doi: 10.1016/j.bbrc.2019.06.035 |
|
[5] |
(a) Wu,B. W.; Cui,X. X.; Zhu, T.; Wang,S. H.; Lu,C. F.; Wang,J. J.; Dang,H. X.; Zhang,S. Y.; Ding,L. N.; Jin,C. Y. Chin. J. Org. Chem. 2020, 40,978 (in Chinese).
doi: 10.6023/cjoc201909016 |
( 吴博文, 崔鑫鑫, 朱挺, 王胜辉, 陆超凡, 王金杰, 党贺祥, 张赛扬, 丁丽娜, 金成允, 有机化学, 2020, 40,978.)
|
|
(b) Gu,Y. Y.; Lv,X. Q.; Ma,X. D.; Zhang,H. J.; Ji,Y. Y.; Ding,W. J.; Sheng, L. Chin. J. Org. Chem. 2020, 40,95 (in Chinese).
doi: 10.6023/cjoc201908021 |
|
( 顾依钰, 吕晓庆, 马晓东, 张浩健, 嵇媛媛, 丁婉婧, 沈立, 有机化学, 2020, 40,95.)
|
|
(c) Hu, Y.; Li,Z. Y.; Ding,Y. J.; Li,Z. Y.; Liu,Z. Y.; Shen,Y. M. Chin. J. Org. Chem. 2019, 39,3230 (in Chinese).
doi: 10.6023/cjoc201905013 |
|
( 胡园, 李震宇, 丁艳娇, 李志颖, 刘志勇, 沈月毛, 有机化学, 2019, 39,3230.)
|
|
[6] |
Vostrikova,T. V.; Kalaev,V. N.; Medvedeva,S. M.; Novichikhina,N. P.; Shikhaliev,K. S. Period. Tche Quim. 2020, 17,327.
|
[7] |
Brazhnikova,D. A.; Popova,T. N.; Kryl'skii,E. D.; Shulgin,K. K.; Matasova,L. V.; Shikhaliev,H. S.; Popov,S. S. Bioorg. Chem. 2020, 14,70.
doi: 10.1016/0045-2068(86)90019-2 |
[8] |
Oncel, S.; Kurtoglu, B.; Karaagac, B. J. Elastom. Plast. 2019, 51,440.
doi: 10.1177/0095244318796594 |
[9] |
(a) Matvienko,I. V.; Bayramov,V. M.; Parygina,N. A.; Kurochkin,V. E.; Alekseev,Y. I. Russ. J. Bioorg. Chem. 2020, 46,349.
doi: 10.1134/S1068162020030127 |
(b) Vijay, K.; Nandi, C.; Samant,S. D. RSC Adv. 2016, 6,49724.
doi: 10.1039/C6RA06642A |
|
(c) Nizamov, S.; Sednev,M. V.; Bossi,M. L.; Hebisch, E.; Frauendorf, H.; Lehnart,S. E.; Belov,V. N.; Hell,S. W. Chem.-Eur. J. 2016, 22,11631.
doi: 10.1002/chem.201601252 |
|
[10] |
(a) Praja-pati,S. M.; Patel,K. D.; Vekariya,R. H.; Panchal,S. N.; Patel,H. D. Curr. Org. Synth. 2019, 16,671.
doi: 10.2174/1570179416666190719112423 |
(b) Prajapati,S. M.; Patel,K. D.; Vekariya,R. H.; Panchal,S. N.; Patel,H. D. RSC Adv. 2014, 4,24463.
doi: 10.1039/C4RA01814A |
|
(c) Wang,D. S.; Chen,Q. A.; Lu,S. M.; Zhou,Y. G. Chem. Rev. 2011, 112,2557.
doi: 10.1021/cr200328h |
|
(d) Sharma, R.; Kour, P.; Kumar, A. J. Chem. Sci. 2018, 130,73.
doi: 10.1007/s12039-018-1466-8 |
|
[11] |
Skraup,Z. H. Ber. Dtsch. Chem. Ges. 1880, 13,2086.
|
[12] |
Li, H.; Wang, J.; Xie,H. X.; Zu,L. S.; Jiang, W.; Duesler,E. N.; Wang, W. Org. Lett. 2007, 9,965.
doi: 10.1021/ol062877u |
[13] |
Zhang,Y. F.; Sim,J. H.; MacMillan,S. N.; Lambert,T. H. Org. Lett. 2020, 22,6026.
doi: 10.1021/acs.orglett.0c02116 |
[14] |
Hwu,J. R.; Panja, A.; Gupta,N. K.; Hu,Y. C.; Hwu,J. R. Eur. J. Org. Chem. 2021,683.
|
[15] |
(a) Jiang, Y.; Wang, Q.; Sun, R.; Tang,X. Y.; Shi, M. Org. Chem. Front. 2016, 3,744.
doi: 10.1039/C6QO00102E |
(b) Massaro,N. P.; Chatterji, A.; Sharma, I. Org. Chem. 2019, 84,13676.
doi: 10.1021/acs.joc.9b01906 |
|
[16] |
(a) Cho,S. H.; Yoo,E. J.; Bae, L.; Chang, S. J. Am. Chem. Soc. 2005, 127,16046.
doi: 10.1021/ja056399e |
(b) Cho,S. H.; Chang,S. B. Angew. Chem. Int. Ed. 2007, 46,1897.
doi: 10.1002/(ISSN)1521-3773 |
|
(c) Cassidy,M. P.; Raushel, J.; Fokin,V. V. Angew. Chem. Int. Ed. 2006, 45,3154.
doi: 10.1002/(ISSN)1521-3773 |
|
[17] |
Yoo,E. J.; Bae, I.; Cho,S. H.; Han, H.; Chang, S. Org. Lett. 2006, 8,1347.
doi: 10.1021/ol060056j |
[18] |
Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127,2038.
doi: 10.1021/ja0432968 |
[19] |
Cui,S. L.; Wang, J.; Wang,Y. G. Tetrahedron 2008, 64,487.
doi: 10.1016/j.tet.2007.11.025 |
[20] |
(a) Yang,W. G.; Yu, Z.; Zhou,Z. T.; Li, L.; Cui, L.; Luo, H. RSC Adv. 2021, 11,8701.
doi: 10.1039/D1RA00650A |
(b) Wu,J. Y.; Liao,W. J.; Lin,X. Y.; Liang,C. F. Org. Biomol. Chem. 2020, 18,8881.
doi: 10.1039/D0OB01963A |
|
(c) Ding,Z. C.; An,X. M.; Zeng,J. H.; Tang,Z. N.; Zhan,Z. P. Adv. Synth. Catal. 2017, 359,3319.
doi: 10.1002/adsc.v359.19 |
|
(d) Liu,T. L.; Li,Q. H.; Wei, L.; Xiong, Y.; Wang,C. J.; Adv. Synth. Catal. 2017, 359,1854.
doi: 10.1002/adsc.v359.11 |
|
[21] |
Sanchez-Diez, E.; Vesga,D. L.; Reyes, E.; Uria, U.; Vicario,J. L. Org. Lett. 2016, 47,1270.
|
[1] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[2] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[3] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[4] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
[5] | 陈志豪, 范奇, 尹标林, 李清江, 王洪根. α-硼取代羰基类化合物的合成进展[J]. 有机化学, 2023, 43(5): 1706-1712. |
[6] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[7] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[8] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[9] | 陈东平, 杨春红, 李明, 赵国孝, 王文鹏, 王喜存, 权正军. 芳炔参与的三组分芳基化反应进展[J]. 有机化学, 2023, 43(2): 503-525. |
[10] | 刘鹏, 钟富明, 廖礼豪, 谭伟强, 赵晓丹. 炔烃参与的去芳构化反应构建螺环己二烯酮类化合物的研究进展[J]. 有机化学, 2023, 43(12): 4019-4035. |
[11] | 田冲, 孙奇, 王俊锋, 陈俏, 温志国, Maxim Borzov, 聂万丽. 卤素阴离子催化的立体可控炔烃碳硼化反应研究[J]. 有机化学, 2023, 43(1): 338-344. |
[12] | 徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis Verpoort. ZnO/离子液体体系催化常压二氧化碳合成β-羰基氨基甲酸酯[J]. 有机化学, 2022, 42(8): 2542-2550. |
[13] | 孙奇, 孙泽颖, 俞泽, 王光伟. 镍催化炔烃的立体选择性芳基-二氟烷基化反应[J]. 有机化学, 2022, 42(8): 2515-2520. |
[14] | 刘会丽, 朱超杰, 唐天地. 酸性沸石HBeta催化的傅克烯基化反应[J]. 有机化学, 2022, 42(6): 1792-1798. |
[15] | 乔辉杰, 杨利婷, 陈雅, 王嘉琳, 孙武轩, 董昊博, 王云威. 温和条件下高效合成咪唑并杂环-肼类衍生物的三组分串联反应[J]. 有机化学, 2022, 42(4): 1188-1197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||