有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3492-3510.DOI: 10.6023/cjoc202103040 上一篇 下一篇
综述与进展
收稿日期:
2021-03-22
修回日期:
2021-04-29
发布日期:
2021-06-02
通讯作者:
郭雪峰, 莫凡洋
基金资助:
Lei Zhanga, Chen Yangb, Xuefeng Guob(), Fanyang Moa()
Received:
2021-03-22
Revised:
2021-04-29
Published:
2021-06-02
Contact:
Xuefeng Guo, Fanyang Mo
Supported by:
文章分享
钯催化的Suzuki-Miyaura偶联反应是目前应用最广泛的合成方法之一. 它以卤化物和有机硼化物作为原料, 可以高效地构建碳碳键. 有机硼化物不仅具有转金属活性, 而且与其它主族金属有机试剂相比具有化学性质稳定、安全低毒及合成方法多样的特点. Suzuki-Miyaura偶联反应具有反应条件温和、转化高效和底物普适性广等突出优势, 是合成化学研究者构建C—C键的优先选择, 而且它已在工业合成领域中被广泛应用. Suzuki-Miyaura偶联反应的快速发展与广泛应用离不开机理研究的进步. 近三十年里, 诸多研究者设计并开展了细致的机理研究, 揭示了Suzuki-Miyaura偶联反应中更多的反应规律. Suzuki-Miyaura偶联反应的催化循环由氧化加成、转金属与还原消除三个过程组成, 依次综述了各过程相关机理的研究进展, 并在最后简单介绍了无过渡金属参与和无碱参与的Suzuki-Miyaura偶联反应.
张雷, 杨晨, 郭雪峰, 莫凡洋. Suzuki-Miyaura偶联反应机理研究进展[J]. 有机化学, 2021, 41(9): 3492-3510.
Lei Zhang, Chen Yang, Xuefeng Guo, Fanyang Mo. Research Progress of Suzuki-Miyaura Cross-Coupling Reaction Mechanism[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3492-3510.
Entry | Reaction time/h | Reactant | Product | Yield/% |
---|---|---|---|---|
1 | 1 | Bu-9-BBN | Ph-Bu | 40 |
Hex-9-BBN | Ph-Hex | 48 | ||
2 | 12 | Hex-9-BBN | Ph-Hex | 86 |
Bu-OBBN | Ph-Bu | 0 | ||
3 | 12 | Bu-9-BBN | Ph-Bu | 84 |
Hex-OBBN | Ph-Hex | 0 | ||
4 | 12 | Bu-OBBN | Ph-Bu | 44 |
Hex-OBBN | Ph-Hex | 49 |
Entry | Reaction time/h | Reactant | Product | Yield/% |
---|---|---|---|---|
1 | 1 | Bu-9-BBN | Ph-Bu | 40 |
Hex-9-BBN | Ph-Hex | 48 | ||
2 | 12 | Hex-9-BBN | Ph-Hex | 86 |
Bu-OBBN | Ph-Bu | 0 | ||
3 | 12 | Bu-9-BBN | Ph-Bu | 84 |
Hex-OBBN | Ph-Hex | 0 | ||
4 | 12 | Bu-OBBN | Ph-Bu | 44 |
Hex-OBBN | Ph-Hex | 49 |
[1] |
Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.
doi: 10.1021/acs.jmedchem.6b00153 pmid: 27028220 |
[2] |
(a) Miyaura, N.; Suzuki, A. J. Chem. Soc., hem. Commun. 1979, 866.
|
(b) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.
doi: 10.1016/S0040-4039(01)95429-2 |
|
[3] |
Liu, Q.-Y.; Zhang, L.; Mo, F.-Y. Acta Chim. Sinica 2020, 78, 1297. (in Chinese).
doi: 10.6023/A20070294 |
( 刘谦益, 张雷, 莫凡洋, 化学学报, 2020, 78, 1297.)
|
|
[4] |
Beller, M.; Blaser, H.-U. Organometallics as Catalysts in the Fine Chemical Industry, Vol. 42. Springer, Heidelberg, 2012.
|
[5] |
Boström, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Nat. Rev. Drug Discovery 2018, 17, 709.
doi: 10.1038/nrd.2018.116 |
[6] |
Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.
doi: 10.1002/adsc.v351:18 |
[7] |
(a) Liu, M.; Su, S.-J.; Jung, M.-C.; Qi, Y.; Zhao, W.-M.; Kido, J. Chem. Mater. 2012, 24, 3817.
doi: 10.1021/cm303075m |
(b) Wong, K.-T.; Hung, T. S.; Lin, Y.; Wu, C.-C.; Lee, G.-H.; Peng, S.-M.; Chou, C. H.; Su, Y. O. Org. Lett. 2002, 4, 513.
doi: 10.1021/ol017066z |
|
[8] |
(a) Lipton, M. F.; Mauragis, M. A.; Maloney, M. T.; Veley, M. F.; VanderBor, D. W.; Newby, J. J.; Appell, R. B.; Daugs, E. D. Org. Process Res. Dev. 2003, 7, 385.
doi: 10.1021/op025620u |
(b) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
doi: 10.1021/cr100346g |
|
[9] |
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
doi: 10.1021/cr00039a007 |
[10] |
(a) Hartwig, J. F. Organotransition Metal Chemistry: from Bonding to Catalysis, University Science Books, Herndon, 2010, Chapter 7.
|
(b) Labinger, J. A. Organometallics 2015, 34, 4784.
doi: 10.1021/acs.organomet.5b00565 |
|
[11] |
(a) Netherton, M. R.; Fu, G. C. Angew. Chem.,Int. Ed. 2002, 41, 3910.
doi: 10.1002/1521-3773(20021018)41:20【-逻*辑*与-】#x00026;lt;3910::AID-ANIE3910【-逻*辑*与-】#x00026;gt;3.0.CO;2-W |
(b) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem., nt. Ed. 2003, 42, 5749.
|
|
[12] |
(a) Fauvarque, J.-F.; Pflüger, F.; Troupel, M. J. Organomet. Chem. 1981, 208, 419.
doi: 10.1016/S0022-328X(00)86726-1 |
(b) Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276.
doi: 10.1021/om00158a026 |
|
(c) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810.
doi: 10.1021/om00004a038 |
|
[13] |
Senn, H. M.; Ziegler, T. Organometallics 2004, 23, 2980.
doi: 10.1021/om049963n |
[14] |
(a) Vermeeren, P.; Sun, X.; Bickelhaupt, F. M. Sci. Rep. 2018, 8, 10729.
doi: 10.1038/s41598-018-28998-3 pmid: 30013049 |
(b) Joy, J.; Stuyver, T.; Shaik, S. J. Am. Chem. Soc. 2020, 142, 3836.
doi: 10.1021/jacs.9b11507 pmid: 30013049 |
|
[15] |
(a) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665.
doi: 10.1021/om00029a026 |
(b) Maes, B. U. W.; Verbeeck, S.; Verhelst, T.; Ekomié, A.; von Wolff, N.; Lefèvre, G.; Mitchell, E. A.; Jutand, A. Chem.-Eur. J. 2015, 21, 7858.
doi: 10.1002/chem.v21.21 |
|
(c) Fitton, P.; Rick, E. A. J. Organomet. Chem. 1971, 28, 287.
doi: 10.1016/S0022-328X(00)84578-7 |
|
[16] |
(a) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal. 2015, 5, 6111.
doi: 10.1021/acscatal.5b01469 |
(b) Kaga, A.; Chiba, S. ACS Catal. 2017, 7, 4697.
doi: 10.1021/acscatal.7b01405 |
|
(c) Sun, X.; Dong, X.; Liu, H.; Liu, Y. Adv. Synth. Catal. 2021, 363, 1527.
doi: 10.1002/adsc.v363.6 |
|
[17] |
(a) Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820. (in Chinese).
doi: 10.6023/cjoc201503007 |
( 张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.)
|
|
(b) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230.
doi: 10.1126/science.aaf7230 |
|
[18] |
(a) Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099.
pmid: 12431081 |
(b) Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem., nt. Ed. 2002, 41, 1945.
pmid: 12431081 |
|
(c) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662.
pmid: 12431081 |
|
(d) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.
doi: 10.1021/ja039889k pmid: 12431081 |
|
[19] |
Wang, J. Y.; Strom, A. E.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 7979.
doi: 10.1021/jacs.8b04073 |
[20] |
(a) Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496.
doi: 10.1021/ja9077528 pmid: 20121156 |
(b) Xue, L.; Lin, Z. Chem. Soc. Rev. 2010, 39, 1692.
doi: 10.1039/B814973A pmid: 20121156 |
|
(c) Meconi, G. M.; Vummaleti, S. V. C.; Luque-Urrutia, J. A.; Belanzoni, P.; Nolan, S. P.; Jacobsen, H.; Cavallo, L.; Solà, M.; Poater, A. Organometallics 2017, 36, 2088.
doi: 10.1021/acs.organomet.7b00114 pmid: 20121156 |
|
(d) Szilvási, T.; Veszprémi, T. ACS Catal. 2013, 3, 1984.
doi: 10.1021/cs400429j pmid: 20121156 |
|
(e) Braga, A. A. C.; Ujaque, G.; Maseras, F. Organometallics 2006, 25, 3647.
doi: 10.1021/om060380i pmid: 20121156 |
|
[21] |
Tsuji, J.Palladium Reagents and Catalysts: New Perspectives for the 21st Century, John Wiley & Sons, Chichester, 2006.
|
[22] |
Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 21, 691.
doi: 10.1246/cl.1992.691 |
[23] |
Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., nt. Ed. 2014, 53, 1669.
|
[24] |
(a) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
doi: 10.1021/acscentsci.7b00212 |
(b) Cheng, L.; Zhou, Q.-L. Acta Chim. Sinica 2020, 78, 1017. (in Chinese).
doi: 10.6023/A20070335 |
|
( 程磊, 周其林, 化学学报, 2020, 78, 1017.)
|
|
[25] |
(a) Fricke, C.; Sperger, T.; Mendel, M.; Schoenebeck, F. Angew. Chem., nt. Ed. 2021, 60, 3355.
|
(b) Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840.
doi: 10.1021/ar2001974 |
|
[26] |
Uson, R.; Fornies, J.; Navarro, R. J. Organomet. Chem. 1975, 96, 307.
doi: 10.1016/S0022-328X(00)83563-9 |
[27] |
Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., hem. Commun. 1986, 1722.
|
[28] |
(a) Canty, A. J. Dalton Trans. 2009, 10409.
pmid: 21629883 |
(b) Muñiz, K. Angew. Chem., nt. Ed. 2009, 48, 9412.
pmid: 21629883 |
|
(c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.
doi: 10.1021/cr9003242 pmid: 21629883 |
|
(d) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.
doi: 10.1039/B809912J pmid: 21629883 |
|
(e) Zhang, H.; Lei, A. Dalton Trans. 2011, 40, 8745.
doi: 10.1039/c1dt10373c pmid: 21629883 |
|
[29] |
Catellani, M.; Chiusoli, G. P. J. Organomet. Chem. 1988, 346, C27.
doi: 10.1016/0022-328X(88)87019-0 |
[30] |
Catellani, M.; Mann, B. E. J. Organomet. Chem. 1990, 390, 251.
doi: 10.1016/0022-328X(90)85036-X |
[31] |
Bocelli, G.; Catellani, M.; Ghelli, S. J. Organomet. Chem. 1993, 458, C12.
doi: 10.1016/0022-328X(93)80486-U |
[32] |
Catellani, M. Synlett 2003, 298.
|
[33] |
Motti, E.; Mignozzi, A.; Catellani, M. J. Mol. Catal. A: Chem. 2003, 204-205, 115.
|
[34] |
Juríček, M.; Brath, H.; Kasák, P.; Putala, M. J. Organomet. Chem. 2007, 692, 5279.
doi: 10.1016/j.jorganchem.2007.08.010 |
[35] |
Kasák, P.; Mikláš, R.; Putala, M. J. Organomet. Chem. 2001, 637, 318.
|
[36] |
Gladiali, S.; Fabbri, D. Chem. Ber. 1997, 130, 543.
doi: 10.1002/(ISSN)1099-0682 |
[37] |
Brath, H.; Mešková, M.; Putala, M. Eur. J. Org. Chem. 2009, 2009, 3315.
doi: 10.1002/ejoc.v2009:20 |
[38] |
Takemoto, T.; Iwasa, S.; Hamada, H.; Shibatomi, K.; Kameyama, M.; Motoyama, Y.; Nishiyama, H. Tetrahedron Lett. 2007, 48, 3397.
doi: 10.1016/j.tetlet.2007.03.063 |
[39] |
Bolliger, J. L.; Blacque, O.; Frech, C. M. Angew. Chem., nt. Ed. 2007, 46, 6514.
|
[40] |
Sau, S. C.; Santra, S.; Sen, T. K.; Mandal, S. K.; Koley, D. Chem. Commun. 2012, 48, 555.
doi: 10.1039/C1CC15732A |
[41] |
(a) Mondal, T.; De, S.; Maity, B.; Koley, D. Chem.-Eur. J. 2016, 22, 15778.
|
(b) Mondal, T.; De, S.; Dutta, S.; Koley, D. Chem.-Eur. J. 2018, 24, 6155.
|
|
[42] |
Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
pmid: 11672034 |
[43] |
Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985.
doi: 10.1021/ja00094a083 |
[44] |
Nunes, C. M.; Monteiro, A. L. J. Brazil. Chem. Soc. 2007, 18, 1443.
doi: 10.1590/S0103-50532007000700021 |
[45] |
Yunker, L. P. E.; Ahmadi, Z.; Logan, J. R.; Wu, W.; Li, T.; Martindale, A.; Oliver, A. G.; McIndoe, J. S. Organometallics 2018, 37, 4297.
doi: 10.1021/acs.organomet.8b00705 |
[46] |
Vikse, K. L.; Woods, M. P.; McIndoe, J. S. Organometallics 2010, 29, 6615.
doi: 10.1021/om1008082 |
[47] |
Sicre, C.; Braga, A. A. C.; Maseras, F.; Cid, M. M. Tetrahedron 2008, 64, 7437.
doi: 10.1016/j.tet.2008.05.018 |
[48] |
Thomas, A. A.; Denmark, S. E. Science 2016, 352, 329.
doi: 10.1126/science.aad6981 pmid: 27081068 |
[49] |
McGarrity, J. F.; Prodolliet, J. J. Org. Chem. 1984, 49, 4465.
doi: 10.1021/jo00197a027 |
[50] |
Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem., nt. Ed. 2013, 52, 7362.
|
[51] |
Amatore, C.; Jutand, A.; Le Duc, G. Chem.-Eur. J. 2011, 17, 2492.
doi: 10.1002/chem.201001911 |
[52] |
Amatore, C.; Jutand, A.; Le Duc, G. Angew. Chem., nt. Ed. 2012, 51, 1379.
|
[53] |
Amatore, C.; Jutand, A.; Le Duc, G. Chem.-Eur. J. 2012, 18, 6616.
doi: 10.1002/chem.201200516 |
[54] |
Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116.
doi: 10.1021/ja1108326 pmid: 21280669 |
[55] |
Schmidt, A. F.; Kurokhtina, A. A.; Larina, E. V. Russ. J. Gen. Chem. 2011, 81, 1573.
doi: 10.1134/S1070363211070334 |
[56] |
(a) Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. J. Mol. Catal. A: Chem. 2010, 324, 39.
doi: 10.1016/j.molcata.2010.02.021 |
(b) Kozuch, S.; Martin, J. M. L. ACS Catal. 2011, 1, 246.
doi: 10.1021/cs100129u |
|
(c) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127, 9298.
doi: 10.1021/ja050583i |
|
(d) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Lledós, A.; Maseras, F. J. Organomet. Chem. 2006, 691, 4459.
doi: 10.1016/j.jorganchem.2006.02.015 |
|
[57] |
Thomas, A. A.; Wang, H.; Zahrt, A. F.; Denmark, S. E. J. Am. Chem. Soc. 2017, 139, 3805.
doi: 10.1021/jacs.6b13384 pmid: 28266847 |
[58] |
Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 4401.
doi: 10.1021/jacs.8b00400 pmid: 29543441 |
[59] |
Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.
doi: 10.1021/om049726k |
[60] |
(a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 1998, 120, 2843.
doi: 10.1021/ja973368d |
(b) Osakada, K.; Onodera, H.; Nishihara, Y. Organometallics 2005, 24, 190.
doi: 10.1021/om049217i |
|
[61] |
(a) Ozawa, F.; Kurihara, K.; Fujimori, M.; Hidaka, T.; Toyoshima, T.; Yamamoto, A. Organometallics 1989, 8, 180.
doi: 10.1021/om00103a023 |
(b) Nakazawa, H.; Ozawa, F.; Yamamoto, A. Organometallics 1983, 2, 241.
doi: 10.1021/om00074a007 |
|
[62] |
Nishihara, Y.; Onodera, H.; Osakada, K. Chem. Commun. 2004, 192.
|
[63] |
Amatore, C.; Le Duc, G.; Jutand, A. Chem.-Eur. J. 2013, 19, 10082.
doi: 10.1002/chem.201300177 |
[64] |
(a) Hartwig, J. F. Inorg. Chem. 2007, 46, 1936.
pmid: 19231862 |
(b) Pérez-Rodríguez, M.; Braga, A. A. C.; Garcia-Melchor, M.; Pérez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.; Álvarez, R.; Maseras, F.; Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650.
doi: 10.1021/ja808036j pmid: 19231862 |
|
(c) Pérez-Rodríguez, M.; Braga, A. A. C.; de Lera, A. R.; Maseras, F.; Álvarez, R.; Espinet, P. Organometallics 2010, 29, 4983.
doi: 10.1021/om1001974 pmid: 19231862 |
|
[65] |
Melvin, P. R.; Nova, A.; Balcells, D.; Hazari, N.; Tilset, M. Organometallics 2017, 36, 3664.
doi: 10.1021/acs.organomet.7b00642 |
[66] |
(a) Jedinák, L.; Zátopková, R.; Zemánková, H.; Šustková, A.; Cankař, P. J. Org. Chem. 2017, 82, 157.
doi: 10.1021/acs.joc.6b02306 pmid: 24824779 |
(b) Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset, M. J. Am. Chem. Soc. 2014, 136, 7300.
doi: 10.1021/ja412565c pmid: 24824779 |
|
[67] |
Zhang, Y.-T.; Cao, M.-N.; Ge, G.-Q.; Xiang, C.-Y.; Song, Z.-J.; Ma, X.-J.; Fang, S.; Lei, Q.-F.; Fang, W.-J.; Xie, H.-J. Sci. Sin. Chim. 2019, 49, 380. (in Chinese).
|
( 章雨桐, 曹梦娜, 戈光琼, 项楚越, 宋志军, 马香娟, 房升, 雷群芳, 方文军, 谢湖均, 中国科学: 化学, 2019, 49, 380.)
|
|
[68] |
Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
doi: 10.1021/cr0505674 |
[69] |
Astruc, D. Inorg. Chem. 2007, 46, 1884.
doi: 10.1021/ic062183h |
[70] |
Sun, B.; Ning, L.; Zeng, H. C. J. Am. Chem. Soc. 2020, 142, 13823.
doi: 10.1021/jacs.0c04804 pmid: 32667195 |
[71] |
(a) Beletskaya, I. P.; Alonso, F.; Tyurin, V. Coord. Chem. Rev. 2019, 385, 137.
doi: 10.1016/j.ccr.2019.01.012 |
(b) Chen, G.-J.; Du, J.-S. Chin. J. Org. Chem. 2014, 34, 65. (in Chinese).
doi: 10.6023/cjoc201307035 |
|
( 陈国军, 杜建时, 有机化学, 2014, 34, 65.)
|
|
(c) He, S.-J.; Pi, J.-J.; Li, Y.; Lu, X.; Fu, Y. Acta Chim. Sinica 2018, 76, 956. (in Chinese).
doi: 10.6023/A18080333 |
|
( 何世江, 皮静静, 李炎, 陆熹, 傅尧, 化学学报, 2018, 76, 956.)
|
|
[72] |
He, Z.; Song, F.; Sun, H.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693.
doi: 10.1021/jacs.8b00380 |
[73] |
(a) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
doi: 10.1038/nchem.2388 |
(b) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089.
doi: 10.1039/C5CC00430F |
|
(c) Xu, Z.-Y.; Yu, H.-Z.; Fu, Y. Chem.-Asian J. 2017, 12, 1765.
doi: 10.1002/asia.v12.14 |
|
(d) Li, G.; Lei, P.; Szostak, M.; Casals-Cruañas, E.; Poater, A.; Cavallo, L.; Nolan, S. P. ChemCatChem 2018, 10, 3096.
doi: 10.1002/cctc.v10.14 |
|
[74] |
Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311.
doi: 10.1021/jacs.6b12329 |
[75] |
(a) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 14468.
doi: 10.1021/ja8056503 pmid: 18839946 |
(b) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422.
doi: 10.1021/ja806244b pmid: 18839946 |
|
(c) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815.
doi: 10.1021/ja810157e pmid: 18839946 |
|
[76] |
Liu, L. L.; Zhang, S.; Chen, H.; Lv, Y.; Zhu, J.; Zhao, Y. Chem.- Asian J. 2013, 8, 2592.
doi: 10.1002/asia.v8.11 |
[77] |
(a) Dong, L.; Wen, J.; Qin, S.; Yang, N.; Yang, H.; Su, Z.; Yu, X.; Hu, C. ACS Catal. 2012, 2, 1829.
doi: 10.1021/cs300028y |
(b) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem., nt. Ed. 2008, 47, 8897.
|
|
(c) Wen, J.; Qin, S.; Ma, L.-F.; Dong, L.; Zhang, J.; Liu, S.-S.; Duan, Y.-S.; Chen, S.-Y.; Hu, C.-W.; Yu, X.-Q. Org. Lett. 2010, 12, 2694.
doi: 10.1021/ol100838m |
|
[78] |
Ohashi, M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 2013, 443.
doi: 10.1002/ejoc.201201405 |
[79] |
Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Nature 2018, 563, 100.
doi: 10.1038/s41586-018-0628-7 |
[80] |
Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. J. Am. Chem. Soc. 2017, 139, 12418.
doi: 10.1021/jacs.7b07687 |
[81] |
Reina, A.; Krachko, T.; Onida, K.; Bouyssi, D.; Jeanneau, E.; Monteiro, N.; Amgoune, A. ACS Catal. 2020, 10, 2189.
doi: 10.1021/acscatal.9b05159 |
[82] |
Lu, H. P.; Xun, L.; Xie, X. S. Science 1998, 282, 1877.
pmid: 9836635 |
[83] |
Riss, A.; Paz, A. P.; Wickenburg, S.; Tsai, H.-Z.; De Oteyza, D. G.; Bradley, A. J.; Ugeda, M. M.; Gorman, P.; Jung, H. S.; Crommie, M. F.; Rubio, A.; Fischer, F. R. Nat. Chem. 2016, 8, 678.
doi: 10.1038/nchem.2506 |
[84] |
(a) Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D.; Guo, X. Sci. Adv. 2018, 4, eaar2177.
|
(b) Yang, C.; Liu, Z.; Li, Y.; Zhou, S.; Lu, C.; Guo, Y.; Ramirez, M.; Zhang, Q.; Li, Y.; Liu, Z.; Houk, K. N.; Zhang, D.; Guo, X. Sci. Adv. 2021, 7, eabf0689.
doi: 10.1126/sciadv.abf0689 |
[1] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[2] | 梁陆祺, 奚娟, 姜若楠, 杨艺, 孙丰钢, 张立志, 李新进, 刘会. 镍催化硫酯转移反应合成芳基硫酯[J]. 有机化学, 2023, 43(4): 1566-1573. |
[3] | 彭菊, 何晓倩, 廖黎丽, 白若鹏, 蓝宇. 取代基电性效应对碳硅还原消除区域选择性调控的理论研究[J]. 有机化学, 2023, 43(10): 3608-3613. |
[4] | 申宁宁, 刘艳杰, 田荣强, 段征, Francois Mathey. 通过1-磷杂富烯合成含磷多环化合物[J]. 有机化学, 2019, 39(8): 2277-2286. |
[5] | 李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇. 碱土金属促进氢官能团化反应的研究进展[J]. 有机化学, 2018, 38(8): 1885-1896. |
[6] | 王晶晶, 李峰, 于晓波, 刘澜涛, 丁俊汝, 谢佩瑶, 王建辉. 过渡金属催化N-导向羰基和醇羟基邻位C-C键活化反应的研究进展[J]. 有机化学, 2018, 38(7): 1638-1649. |
[7] | 王涛, 许凯, 孟团结, 张安安, 王红雨, 沈思思, 刘澜涛. 吖啶作为辅助配体的N-杂环卡宾-钯(Ⅱ)化合物:合成、表征和催化应用[J]. 有机化学, 2017, 37(7): 1794-1799. |
[8] | 徐冬冬, 单春晖, 白若鹏, 蓝宇. 碱土金属催化碳二亚胺硼氢化反应机理的理论研究[J]. 有机化学, 2017, 37(5): 1231-1236. |
[9] | 宋闯, 毛国梁, 刘振华, 宁英男, 姜涛. 均相Cr系催化剂催化乙烯选择性齐聚反应机理研究进展[J]. 有机化学, 2016, 36(9): 2105-2120. |
[10] | 杜丽娟, 吴彩虹, 顾红红, 李娟. Cu(II)催化合成吡啶并[1,2-a]苯并咪唑的密度泛函理论研究[J]. 有机化学, 2015, 35(8): 1726-1732. |
[11] | 陈国军, 杜建时. 镍催化酚衍生物的Suzuki-Miyaura偶联反应研究进展[J]. 有机化学, 2014, 34(1): 65-80. |
[12] | 梁洪泽,王强. 氯代膦烯化合物与零价钯的氧化加成反应机理探讨[J]. 有机化学, 2006, 26(05): 694-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||