有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3511-3520.DOI: 10.6023/cjoc202106011 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
张涛a, 李尚达b,*(), 周春林b, 王新超b, 张孟b, 高泽众b, 李纲b,*()
收稿日期:
2021-06-06
修回日期:
2021-06-07
发布日期:
2021-06-07
通讯作者:
李尚达, 李纲
基金资助:
Tao Zhanga, Shangda Lib(), Chunlin Zhoub, Xinchao Wangb, Meng Zhangb, Zezhong Gaob, Gang Lib()
Received:
2021-06-06
Revised:
2021-06-07
Published:
2021-06-07
Contact:
Shangda Li, Gang Li
Supported by:
文章分享
富电子苯酚类化合物的位点选择性C—H键碘化是一个挑战性的反应. 报道了一类钯催化的、利用4-碘基-3-硝基苯甲醚为温和的碘化试剂, 实现无保护2-芳基苯酚和2-苯氧乙酸类化合物的C—H键碘化反应. 该反应适用于一系列富电子的苯酚类衍生物, 且能够获得优秀的位点选择性和良好的官能团耐受性. 结果表明, 对于具有挑战性底物的C—H键碘化, 经由形式复分解的C—H键碘化反应是一个潜在的有用方法.
张涛, 李尚达, 周春林, 王新超, 张孟, 高泽众, 李纲. 以芳基碘为碘化试剂的苯酚衍生物的位点选择性C—H键碘化反应[J]. 有机化学, 2021, 41(9): 3511-3520.
Tao Zhang, Shangda Li, Chunlin Zhou, Xinchao Wang, Meng Zhang, Zezhong Gao, Gang Li. Site-Selective C—H Iodination of Phenol Derivatives Using Aryl Iodide as Iodinating Reagent[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3511-3520.
Entry | Ligand | Base (equiv.) | Ag salt (equiv.) | T/℃ | Yield/% 2a/3a | Entry | Ligand | Base (equiv.) | Ag salt (equiv.) | T/℃ | Yield/% 2a/3a |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | L1 | NaOAc (0.5) | — | 90 | 23/10 | 12 | L3 | K2CO3 (1.0) | AgNO3 (0.1) | 90 | 50/7 |
2 | L2 | NaOAc (0.5) | — | 90 | 47/8 | 13 | L3 | K2CO3 (1.0) | AgBr (0.1) | 90 | 65/6 |
3 | L3 | NaOAc (0.5) | — | 90 | 52/10 | 14 | L3 | K2CO3 (1.0) | AgCl (0.2) | 90 | 80/8 |
4 | L3 | NaOAc (1.0) | — | 90 | 57/9 | 15 | L3 | K2CO3 (1.0) | AgCl (0.5) | 90 | 66/8 |
5 | L3 | Na2CO3 (1.0) | — | 90 | 73/10 | 16 | L3 | K2CO3 (1.0) | AgCl (0.1) | 80 | 82/8 |
6 | L3 | K2CO3 (1.0) | — | 90 | 77/7 | 17 | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 81/8 |
7 | L3 | K2CO3 (2.0) | — | 90 | 72/10 | 18b | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 80/8 |
8 | L3 | KOH (1.0) | — | 90 | 69/6 | 19c | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 82/7 |
9 | L3 | K2CO3 (1.0) | AgCl (0.1) | 90 | 82/8 | 20d | L2 | K2CO3 (1.0) | AgCl (0.1) | 60 | 25/1 |
10 | L3 | K2CO3 (1.0) | AgOAc (0.1) | 90 | 50/5 | 21e | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 85/7f |
11 | L2 | K2CO3 (1.0) | Ag2CO3 (0.1) | 90 | 63/7 | 22g | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 65/5 |
Entry | Ligand | Base (equiv.) | Ag salt (equiv.) | T/℃ | Yield/% 2a/3a | Entry | Ligand | Base (equiv.) | Ag salt (equiv.) | T/℃ | Yield/% 2a/3a |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | L1 | NaOAc (0.5) | — | 90 | 23/10 | 12 | L3 | K2CO3 (1.0) | AgNO3 (0.1) | 90 | 50/7 |
2 | L2 | NaOAc (0.5) | — | 90 | 47/8 | 13 | L3 | K2CO3 (1.0) | AgBr (0.1) | 90 | 65/6 |
3 | L3 | NaOAc (0.5) | — | 90 | 52/10 | 14 | L3 | K2CO3 (1.0) | AgCl (0.2) | 90 | 80/8 |
4 | L3 | NaOAc (1.0) | — | 90 | 57/9 | 15 | L3 | K2CO3 (1.0) | AgCl (0.5) | 90 | 66/8 |
5 | L3 | Na2CO3 (1.0) | — | 90 | 73/10 | 16 | L3 | K2CO3 (1.0) | AgCl (0.1) | 80 | 82/8 |
6 | L3 | K2CO3 (1.0) | — | 90 | 77/7 | 17 | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 81/8 |
7 | L3 | K2CO3 (2.0) | — | 90 | 72/10 | 18b | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 80/8 |
8 | L3 | KOH (1.0) | — | 90 | 69/6 | 19c | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 82/7 |
9 | L3 | K2CO3 (1.0) | AgCl (0.1) | 90 | 82/8 | 20d | L2 | K2CO3 (1.0) | AgCl (0.1) | 60 | 25/1 |
10 | L3 | K2CO3 (1.0) | AgOAc (0.1) | 90 | 50/5 | 21e | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 85/7f |
11 | L2 | K2CO3 (1.0) | Ag2CO3 (0.1) | 90 | 63/7 | 22g | L3 | K2CO3 (1.0) | AgCl (0.1) | 60 | 65/5 |
[1] |
(a) Bringmann, G.; Gulder, T.; Gulder, T. A.; Breuning, M. Chem. Rev. 2011, 111, 563.
doi: 10.1021/cr100155e pmid: 20939606 |
(b) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
doi: 10.1021/cr000664r pmid: 20939606 |
|
(c) Qin, L.; Ren, L.; Wan, S.; Liu, G.; Luo, X.; Liu, Z.; Li, F.; Yu, Y.; Liu, J.; Wei, Y. J. Med. Chem. 2017, 60, 3606.
doi: 10.1021/acs.jmedchem.7b00254 pmid: 20939606 |
|
[2] |
Reed, M. A.; Chang, M. T.; Snieckus, V. Org. Lett. 2004, 6, 2297.
doi: 10.1021/ol049740t |
[3] |
(a) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (in Chinese).
doi: 10.6023/A15040295 pmid: 27341176 |
( 廖港, 史炳锋, 化学学报, 2015, 73, 1283.)
pmid: 27341176 |
|
(b) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
doi: 10.1021/acs.chemrev.6b00089 pmid: 27341176 |
|
(c) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873. (in Chinese).
doi: 10.6023/cjoc201705018 pmid: 27341176 |
|
( 骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
pmid: 27341176 |
|
(d) Das, R.; Kapur, M. Asian J. Org. Chem. 2018, 7, 1524.
doi: 10.1002/ajoc.201800142 pmid: 27341176 |
|
[4] |
(a) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., nt. Ed. 2005, 44, 2112.
pmid: 22548632 |
(b) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416.
doi: 10.1021/ja060232j pmid: 22548632 |
|
(c) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523.
doi: 10.1021/ol060747f pmid: 22548632 |
|
(d) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., nt. Ed. 2008, 47, 5215.
pmid: 22548632 |
|
(e) Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298.
doi: 10.1021/ja302631j pmid: 22548632 |
|
(f) Wang, X.-C.; Hu, Y.; Bonacorsi, S.; Hong, Y.; Burrell, R.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 10326.
doi: 10.1021/ja4055492 pmid: 22548632 |
|
(g) Urones, B.; Martínez, Á. M.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Commun. 2013, 49, 11044.
doi: 10.1039/c3cc47174h pmid: 22548632 |
|
(h) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Science 2014, 346, 451.
pmid: 22548632 |
|
(i) Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741.
doi: 10.1021/cs500813z pmid: 22548632 |
|
(j) Lu, C.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen, G. Tetrahedron 2014, 70, 4197.
doi: 10.1016/j.tet.2014.02.070 pmid: 22548632 |
|
(k) Aihara, Y.; Chatani, N. ACS Catal. 2016, 6, 4323.
doi: 10.1021/acscatal.6b00964 pmid: 22548632 |
|
(l) Zhan, B.-B.; Liu, Y.-H.; Hu, F.; Shi, B.-F. Chem. Commun. 2016, 52, 4934.
doi: 10.1039/C6CC00822D pmid: 22548632 |
|
(i) Fan, X.-M.; Guo, Y.; Li, Y.-D.; Yu, K.-K.; Liu, H.-W.; Liao, D.-H.; Ji, Y.-F. Asian J. Org. Chem. 2016, 5, 499.
doi: 10.1002/ajoc.v5.4 pmid: 22548632 |
|
(m) Li, J.; Cong, W.; Gao, Z.; Zhang, J.; Yang, H.; Jiang, G. Org. Biomol. Chem. 2018, 16, 3479.
doi: 10.1039/C8OB00318A pmid: 22548632 |
|
(n) Schreib, B. S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 8758.
doi: 10.1021/jacs.9b03998 pmid: 22548632 |
|
[5] |
Sun, X.; Yao, X.; Zhang, C.; Rao, Y. Chem. Commun. 2015, 51, 10014.
doi: 10.1039/C5CC02533H |
[6] |
(a) Youn, S. W.; Cho, C. G. Org. Biomol. Chem. 2021, DOI: 10. 1039/d1ob00506e.
|
(b) Xu, X.; Luo, J. ChemSusChem 2019, 12, 4601.
doi: 10.1002/cssc.v12.20 |
|
[7] |
(a) Bedford, R. B.; Engelhart, J. U.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Dalton Trans. 2010, 39, 10464.
doi: 10.1039/c0dt00385a pmid: 20931130 |
(b) John, A.; Nicholas, K. M. J. Org. Chem. 2012, 77, 5600.
doi: 10.1021/jo300713h pmid: 20931130 |
|
(c) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262.
doi: 10.1039/C3CC47431C pmid: 20931130 |
|
[8] |
(a) Bhawal, B. N.; Morandi, B. Angew. Chem., nt. Ed. 2019, 58, 10074.
pmid: 31283206 |
(b) Yu, B.; Zou, S.; Liu, H.; Huang, H. J. Am. Chem. Soc. 2020, 142, 18341.
doi: 10.1021/jacs.0c10615 pmid: 31283206 |
|
(c) Yu, B.; Zou, S.; Huang, H. J. Org. Chem. 2021, 86, 7849.
doi: 10.1021/acs.joc.1c00752 pmid: 31283206 |
|
(d) Rochette, E.; Desrosiers, V.; Soltani, Y.; Fontaine, F. G. J. Am. Chem. Soc. 2019, 141, 12305.
doi: 10.1021/jacs.9b04305 pmid: 31283206 |
|
(e) Baba, K.; Tobisu, M.; Chatani, N. Angew. Chem., nt. Ed. 2013, 52, 11892.
pmid: 31283206 |
|
(f) Shao, Y.; Zhang, F.; Zhang, J.; Zhou, X. Angew. Chem., nt. Ed. 2016, 55, 11485.
pmid: 31283206 |
|
(g) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889.
doi: 10.1021/jacs.8b13251 pmid: 31283206 |
|
[9] |
Li, S.; Zhang, C.; Fu, L.; Wang, H.; Cai, L.; Chen, X.; Wang, X.; Li, G. CCS Chem. 2021, DOI: 10.31635/ccschem.021.202101156.
|
[10] |
(a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., nt. Ed. 1997, 36, 1740.
pmid: 24620903 |
(b) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250.
doi: 10.1021/ja203335u pmid: 24620903 |
|
(c) Luo, S.; Luo, F.-X.; Zhang, X.-S.; Shi, Z.-J. Angew. Chem., nt. Ed. 2013, 52, 10598.
pmid: 24620903 |
|
(d) Inamoto, K.; Kadokawa, J.; Kondo, Y. Org. Lett. 2013, 15, 3962.
doi: 10.1021/ol401734m pmid: 24620903 |
|
(e) Zhang, C.; Ji, J.; Sun, P. J. Org. Chem. 2014, 79, 3200.
doi: 10.1021/jo4028825 pmid: 24620903 |
|
(f) Duan, S.; Xu, Y.; Zhang, X.; Fan, X. Chem. Commun. 2016, 52, 10529.
doi: 10.1039/C6CC04756D pmid: 24620903 |
|
(g) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Nat. Catal. 2018, 1, 469.
doi: 10.1038/s41929-018-0080-y pmid: 24620903 |
|
(h) Kumar, D. R.; Gopi Krishna Reddy, A.; Satyanarayana, G. Eur. J. Org. Chem. 2019, 2019, 2472.
doi: 10.1002/ejoc.201801637 pmid: 24620903 |
|
[11] |
(a) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504.
doi: 10.1021/ol202229w pmid: 21950683 |
(b) Schmidt, B.; Riemer, M. J. Heterocycl. Chem. 2017, 54, 1287.
pmid: 21950683 |
|
[12] |
(a) Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480.
doi: 10.1021/ol403364k |
(b) Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114.
doi: 10.1021/acscatal.9b04768 |
|
(c) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.
doi: 10.1002/cjoc.v38.3 |
|
[13] |
Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489.
doi: 10.1038/nature24632 |
[14] |
(a) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142.
pmid: 18004863 |
(b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.
doi: 10.1039/B809912J pmid: 18004863 |
|
(c) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
doi: 10.1038/nature11008 pmid: 18004863 |
|
(d) Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840.
doi: 10.1021/ar2001974 pmid: 18004863 |
|
[15] |
(a) Xiao, Y.; Xu, Y.; Cheon, H.; Chae, J. J. Org. Chem. 2013, 78, 5804.
doi: 10.1021/jo400702z pmid: 23713792 |
(b) He, X.; Yu, Z.; Jiang, S.; Zhang, P.; Shang, Z.; Lou, Y.; Wu, J. Bioorg. Med. Chem. 2015, 25, 5601.
doi: 10.1016/j.bmcl.2015.10.041 pmid: 23713792 |
|
(c) Okaecwe, T.; Swanepoel, A.; Petzer, A.; Bergh, J.; Petzer, J. Bioorg. Med. Chem. 2012, 20, 4336.
doi: 10.1016/j.bmc.2012.05.048 pmid: 23713792 |
|
[16] |
Dudnik, A. S.; Chernyak, N.; Huang, C.; Gevorgyan, V. Angew. Chem., n. Ed. 2010, 49, 8729.
|
[1] | 孟宪强, 杨艺, 梁万洁, 王靖涛, 张荣葵, 刘会. 钯催化联烯胺区域选择性芳基酚氧化反应[J]. 有机化学, 2024, 44(1): 224-231. |
[2] | 王兢睿, 冯永奎, 王能中, 黄年玉, 姚辉. 钯催化立体选择性合成硝基烷类β-碳糖苷[J]. 有机化学, 2023, 43(9): 3216-3225. |
[3] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[4] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[5] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[6] | 向勋, 何照林, 董秀琴. 钯和手性磷酸协同催化高效构建手性分子的研究进展[J]. 有机化学, 2023, 43(3): 791-808. |
[7] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[8] | 孙美娇, 谭晶, 谭玉, 彭进松, 陈春霞. 钯催化3-(2-氨基嘧啶-4-基)吲哚2位C—H键芳基化反应的研究[J]. 有机化学, 2023, 43(11): 3945-3959. |
[9] | 熊威, 石斌, 姜烜, 陆良秋, 肖文精. 配体调控钯催化乙烯基环状碳酰胺和异氰酸酯的差异性转化[J]. 有机化学, 2023, 43(1): 265-273. |
[10] | 曹成瑶, 牛亚茹, 蒋昀辰, 曲红梅, 陈超. 钯催化的氯二氟乙基高价碘试剂对于乙酰苯胺C—H键的氯二氟乙基化反应研究[J]. 有机化学, 2022, 42(7): 2098-2105. |
[11] | 曹廷舒, 魏向阳, 罗敏, 汪逸飞, 潘子俊, 徐程, 殷国栋. 醋酸碘苯促进的脱氢氧化反应合成2-硫芳(烷)基苯酚及10H-吩噻嗪[J]. 有机化学, 2022, 42(7): 2079-2088. |
[12] | 石宇冰, 白文己, 母伟花, 李江平, 于嘉玮, 连冰. 钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展[J]. 有机化学, 2022, 42(5): 1346-1374. |
[13] | 陈宏超, 吴奕晨, 于洋, 王鹏. 钯催化的烯烃异构化反应[J]. 有机化学, 2022, 42(3): 742-757. |
[14] | 杨新拓, 陈品红, 刘国生. 钯催化烯烃的不对称Aza-Wacker反应: 高效合成手性1,3-噁嗪烷-2-酮[J]. 有机化学, 2022, 42(10): 3382-3389. |
[15] | 贾仕虎, 陈思元, 刘泽水, 程鸿刚, 周强辉. 钯/新型轴手性膦-烯配体催化的吲哚不对称烯丙基烷基化反应[J]. 有机化学, 2022, 42(10): 3373-3381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||