有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3521-3531.DOI: 10.6023/cjoc202105021 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
收稿日期:
2021-05-11
修回日期:
2021-06-03
发布日期:
2021-06-07
通讯作者:
曹同祥, 祝诗发
基金资助:
Hejiang Luoa, Tongxiang Caoa(), Shifa Zhua,b()
Received:
2021-05-11
Revised:
2021-06-03
Published:
2021-06-07
Contact:
Tongxiang Cao, Shifa Zhu
Supported by:
文章分享
报道了金属引导由N-(2-炔基芳基)内酰胺发散型合成羰基稠合的吲哚/吡咯的方法. 该反应通过可调控的酰基正离子区域选择性傅-克环化反应进行, 同时具有底物范围广, 原子经济性和步骤经济性高等优势, 有望用于含有相关结构的生物活性分子的合成.
罗和江, 曹同祥, 祝诗发. 金属引导的发散型傅-克环化反应合成羰基稠合的吲哚/吡咯[J]. 有机化学, 2021, 41(9): 3521-3531.
Hejiang Luo, Tongxiang Cao, Shifa Zhu. Divergent Synthesis of Ketone-Fused Indoles/Pyrroles via Metal-Guided Friedel-Crafts Cyclization[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3521-3531.
Entry | Cat. (mol%) | Temp./℃ | Yield/% | |
---|---|---|---|---|
2a | 3a | |||
1 | AgSbF6 (5) | 80 | 15 | ND |
2 | IPrAuNTf2 (5) | 80 | 45 | 43 |
3 | Hg(OTf)2 (5) | 80 | 41 | ND |
4 | AgSbF6 (5) | Reflux | 21 | ND |
5 | AgNTf2 (5) | Reflux | 28 | ND |
6 | AgNTf2 (10) | Reflux | 48 | ND |
7 | AgNTf2 (20) | Reflux | 72b | ND |
8 | Hg(OTf)2 (10) | 60 | 61 | ND |
9 | PdCl2 (10) | Reflux | 16 | 53b |
10 | Pd(PhCN)2Cl2 (10) | Reflux | 11 | 34 |
11 | Pd(cod)Cl2 (10) | Reflux | 12 | 43 |
12 | Pd(PPh3)4 (10) | Reflux | 39 | ND |
13 | — | Reflux | ND | ND |
Entry | Cat. (mol%) | Temp./℃ | Yield/% | |
---|---|---|---|---|
2a | 3a | |||
1 | AgSbF6 (5) | 80 | 15 | ND |
2 | IPrAuNTf2 (5) | 80 | 45 | 43 |
3 | Hg(OTf)2 (5) | 80 | 41 | ND |
4 | AgSbF6 (5) | Reflux | 21 | ND |
5 | AgNTf2 (5) | Reflux | 28 | ND |
6 | AgNTf2 (10) | Reflux | 48 | ND |
7 | AgNTf2 (20) | Reflux | 72b | ND |
8 | Hg(OTf)2 (10) | 60 | 61 | ND |
9 | PdCl2 (10) | Reflux | 16 | 53b |
10 | Pd(PhCN)2Cl2 (10) | Reflux | 11 | 34 |
11 | Pd(cod)Cl2 (10) | Reflux | 12 | 43 |
12 | Pd(PPh3)4 (10) | Reflux | 39 | ND |
13 | — | Reflux | ND | ND |
[1] |
(a) Michael, J. P. The Alkaloids: Chemistry and Biology 2001, 55, 91.
|
(b) Michael, J. P. The Alkaloids: Chemistry and Biology 2016, 75, 1.
|
|
[2] |
Estévez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev. 2014, 43, 4633.
doi: 10.1039/C3CS60015G |
[3] |
Huckaba, A. J.; Giordano, F.; McNamara, L. E.; Dreux, K. M.; Hammer, N. I.; Tschumper, G. S.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K.; Delcamp, J. H. Adv. Energy Mater. 2015, 5, 1401629.
doi: 10.1002/aenm.201401629 |
[4] |
(a) Lee, C.; Sohn, J. H.; Jang, J.-H.; Ahn, J. S.; Oh, H.; Baltrusaitis, J.; Hwang, I. H.; Gloer, J. B. J. Antibiot. 2015, 68, 715.
doi: 10.1038/ja.2015.56 pmid: 16525547 |
(b) van Wijngaarden, I.; Hamminga, D.; van Hes, R.; Standaar, P. J.; Tipker, J.; Tulp, M. T. M.; Mol, F.; Olivier, B.; de Jonge, A. J. Med. Chem. 1993, 36, 3693.
pmid: 16525547 |
|
(c) Dinsmore, A.; Mandy, K.; Michael, J. P. Org. Biomol. Chem. 2006, 4, 1032.
pmid: 16525547 |
|
(d) Sun, L.-R.; Li, X.; Wang, S.-X. J. Asian Nat. Prod. Res. 2005, 7, 127.
doi: 10.1080/10286020310001625157 pmid: 16525547 |
|
[5] |
(a) Johnson, T. O.; Ermolieff, J.; Jirousek, M. R. Nat. Rev. Drug Discov. 2002, 1, 696.
doi: 10.1038/nrd895 pmid: 19410499 |
(b) Vintonyak, V. V.; Antonchick, A. P.; Rauh, D.; Waldmann, H. Curr. Opin. Chem. Biol. 2009, 13, 272.
doi: 10.1016/j.cbpa.2009.03.021 pmid: 19410499 |
|
[6] |
(a) Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 1028.
doi: 10.1021/ja953080t pmid: 22260312 |
(b) Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 5918.
pmid: 22260312 |
|
(c) Kato, K.; Ono, M.; Akita, H. Tetrahedron 2001, 57, 10055.
doi: 10.1016/S0040-4020(01)01068-7 pmid: 22260312 |
|
(d) Yadav, A. K.; Peruncheralathan, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1388.
pmid: 22260312 |
|
(e) Takaya, J.; Udagawa, S.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4906.
pmid: 22260312 |
|
(f) Stoffman, E. J. L.; Clive, D. L. J. Tetrahedron 2010, 66, 4452.
doi: 10.1016/j.tet.2010.04.081 pmid: 22260312 |
|
(g) Allan, K. M.; Kobayashi, K.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 1392.
doi: 10.1021/ja210793x pmid: 22260312 |
|
(h) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396.
doi: 10.1021/ja210837b pmid: 22260312 |
|
(i) Umezaki, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2013, 15, 4230.
doi: 10.1021/ol4019562 pmid: 22260312 |
|
(j) Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. 2013, 15, 550.
doi: 10.1021/ol303366u pmid: 22260312 |
|
(k) Layek, M.; Reddy M, A.; Dhanunjaya Rao, A. V.; Alvala, M.; Arunasree, M. K.; Islam, A.; Mukkanti, K.; Iqbal, J.; Pal, M. Org. Biomol. Chem. 2011, 9, 1004.
doi: 10.1039/C0OB00771D pmid: 22260312 |
|
(l) Ni, Q.; Zhang, H.; Grossmann, A.; Loh, C. C. J.; Merkens, C.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 13562.
doi: 10.1002/anie.201305957 pmid: 22260312 |
|
(m) Park, J.; Kim, D.-H.; Das, T.; Cho, C.-G. Org. Lett. 2016, 18, 5098.
pmid: 22260312 |
|
(n) Li, W.; Dong, Z.; Zhang, Y.; Zeng, Z.; Usman, M.; Liu, W.-B. J. Org. Chem. 2019, 84, 7995.
doi: 10.1021/acs.joc.9b00866 pmid: 22260312 |
|
(o) Dong, Z.; Zhang, X.-W.; Li, W.; Li, Z.-M.; Wang, W.-Y.; Zhang, Y.; Liu, W.; Liu, W.-B. Org. Lett. 2019, 21, 1082.
doi: 10.1021/acs.orglett.8b04128 pmid: 22260312 |
|
(p) Yang, X.; Luo, G.; Zhou, L.; Liu, B.; Zhang, X.; Gao, H.; Jin, Z.; Chi, Y. R. ACS Catal. 2019, 9, 10971.
doi: 10.1021/acscatal.9b03163 pmid: 22260312 |
|
(q) Harada, S.; Yanagawa, M.; Nemoto, T. ACS Catal. 2020, 10, 11971.
doi: 10.1021/acscatal.0c03940 pmid: 22260312 |
|
(r) Occhiato, E. G.; Prandi, C.; Ferrali, A.; Guarna, A. J. Org. Chem. 2005, 70, 4542.
pmid: 22260312 |
|
(s) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868.
pmid: 22260312 |
|
(t) Lu, S.-C.; Wang, W.-X.; Gao, P.-L.; Zhang, W.; Tu, Z.-F. Org. Biomol. Chem. 2012, 10, 232.
doi: 10.1039/C1OB05954H pmid: 22260312 |
|
(u) Jiang, B.; Li, Y.; Tu, M.-S.; Wang, S.-L.; Tu, S.-J.; Li, G. J. Org. Chem. 2012, 77, 7497.
doi: 10.1021/jo301323r pmid: 22260312 |
|
(v) Jiang, B.; Li, Q.-Y.; Zhang, H.; Tu, S.-J.; Pindi, S.; Li, G. Org. Lett. 2012, 14, 700.
doi: 10.1021/ol203166c pmid: 22260312 |
|
(w) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 11712.
doi: 10.1021/ja405043g pmid: 22260312 |
|
(x) Zheng, Z.; Tu, H.; Zhang, L. Chem. Eur. J. 2014, 20, 2445.
doi: 10.1002/chem.v20.9 pmid: 22260312 |
|
(y) Chen, J.; Chang, D.; Xiao, F.; Deng, G.-J. J. Org. Chem. 2019, 84, 568.
doi: 10.1021/acs.joc.8b02410 pmid: 22260312 |
|
(z) Li, W.; Usman, M.; Wu, L.-Y.; Liu, W.-B. J. Org. Chem. 2019, 84, 15754.
doi: 10.1021/acs.joc.9b02672 pmid: 22260312 |
|
(aa) Sun, K.; Lei, J.; Liu, Y.; Liu, B.; Chen, N. Adv. Synth. Catal. 2020, 362, 3709.
doi: 10.1002/adsc.v362.18 pmid: 22260312 |
|
(ab) Xu, X.; Chen, J.; Ke, J.; Zhang, K.; Wu, P.; Wang, S. Chin. J. Org. Chem. 2021, 41, 206. (in Chinese).
doi: 10.6023/cjoc202005018 pmid: 22260312 |
|
( 徐学涛, 陈洁, 柯俊杰, 张焜, 吴盼盼, 王少华, 有机化学, 2021, 41, 206.)
pmid: 22260312 |
|
(ac) Du, Y.; Xiao, Y.; Tian, F.; Han, L.; Gu, Y.; Zhu, N. Chin. J. Org. Chem. 2021, 41, 521. (in Chinese).
doi: 10.6023/cjoc202007014 pmid: 22260312 |
|
( 杜玉英, 肖业元, 田福利, 韩利民, 顾彦龙, 竺宁, 有机化学, 2021, 41, 521.)
pmid: 22260312 |
|
(ad) Zhou, B.; Liang, R.; Cao, Z.; Zhou, P.; Jia, Y. Acta Chim. Sinica 2021, 79, 176. (in Chinese).
doi: 10.6023/A20110520 pmid: 22260312 |
|
( 周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176.)
pmid: 22260312 |
|
(ae) Liu, Y.-H.; Song, H.; Zhang, C.; Liu, Y.-J.; Shi, B.-F. Chin. J. Chem. 2020, 38, 1545.
doi: 10.1002/cjoc.v38.12 pmid: 22260312 |
|
[7] |
(a) Li, G.; Huang, X.; Zhang, L. Angew. Chem., Int. Ed. 2008, 47, 346.
doi: 10.1002/(ISSN)1521-3773 pmid: 18954058 |
(b) Peng, Y.; Yu, M.; Zhang, L. Org. Lett. 2008, 10, 5187.
doi: 10.1021/ol802159v pmid: 18954058 |
|
[8] |
(a) Liu, L.; Wang, Y.; Zhang, L. Org. Lett. 2012, 14, 3736.
doi: 10.1021/ol301593w |
(b) Zheng, Z.; Touve, M.; Barnes, J.; Reich, N.; Zhang, L. Angew. Chem., Int. Ed. 2014, 53, 9302.
doi: 10.1002/anie.201402268 |
|
[9] |
(a) Zhang, C.; Jiang, H.; Zhu, S. Chem. Commun. 2017, 53, 2677.
doi: 10.1039/C7CC00218A |
(b) Zhu, S.; Zhang, Z.; Huang, X.; Jiang, H.; Guo, Z. Chem.-Eur. J. 2013, 19, 4695.
doi: 10.1002/chem.201300232 |
|
(c) Luo, K.; Cao, T.; Jiang, H.; Chen, L.; Zhu, S. Org. Lett. 2017, 19, 5856.
doi: 10.1021/acs.orglett.7b02834 |
|
(d) Luo, H.; Liang, R.; Chen, L.; Jiang, H.; Zhu, S. Org. Chem. Front. 2018, 5, 1160.
doi: 10.1039/C7QO01122A |
|
(e) Cao, T.; Chen, L.; Zhu, S. Org. Lett. 2019, 21, 90.
doi: 10.1021/acs.orglett.8b03519 |
|
(f) Luo, H.; He, C.; Jiang, H.; Jiang, Zhu, S. Chin. J. Chem. 2020, 38, 1052.
doi: 10.1002/cjoc.v38.10 |
|
(g) Zhang, L.; Shi, Q.; Cao, T.; Zhu, S. Chem. Commun. 2020, 56, 9533.
doi: 10.1039/D0CC04309E |
|
(h) Guan, Z.; Zhu, H. Chin. J. Org. Chem. 2020, 40, 1398. (in Chinese).
doi: 10.6023/cjoc202000024 |
|
( 关正辉, 祝海涛, 有机化学, 2020, 40, 1398.)
|
|
(i) Zhang, Z.; Jiao, N. Chin. J. Org. Chem. 2020, 40, 1790. (in Chinese).
doi: 10.6023/cjoc202000031 |
|
( 张梓曜, 焦宁, 有机化学, 2020, 40, 1790.)
|
|
(j) Liu, X.; Xu, X.; Hu, W. Chin. J. Org. Chem. 2020, 40, 4370. (in Chinese).
doi: 10.6023/cjoc202000085 |
|
( 刘向荣, 徐新芳, 胡文浩, 有机化学, 2020, 40, 4370.)
|
|
[10] |
Tikhe, J. G.; Webber, S. E.; Hostomsky, Z.; Maegley, K. A.; Ekkers, A.; Li, J.; Yu, X.-H.; Almassy, R. J.; Kumpf, R. A.; Boritzki, T. J.; Zhang, C.; Calabrese, C. R.; Curtin, N. J.; Kyle, S.; Thomas, H. D.; Wang, L.-Z.; Calvert, A. H.; Golding, B. T.; Griffin, R. J.; Newell, D. R. J. Med. Chem. 2004, 47, 5467.
doi: 10.1021/jm030513r |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||