有机化学 ›› 2021, Vol. 41 ›› Issue (9): 3668-3674.DOI: 10.6023/cjoc202104021 上一篇 下一篇
所属专题: 镍催化有机反应虚拟合辑
研究论文
收稿日期:
2021-04-10
修回日期:
2021-06-07
发布日期:
2021-06-17
通讯作者:
周维友
基金资助:
Junfeng Qian, Xiaoting Tian, Zhong Wu, Jie Yao, Hui Wang, Weiyou Zhou()
Received:
2021-04-10
Revised:
2021-06-07
Published:
2021-06-17
Contact:
Weiyou Zhou
Supported by:
文章分享
以非均相NiGa层状双金属氧化物(Ni3Ga-LDO)为催化剂, 催化异色满与芳伯胺的碳氮偶联反应, 可以较高收率获得碳氮偶联产物. 该催化体系对多种芳伯胺具有较好的适用性. 研究结果表明, 镍物种在氧化偶联过程中起关键作用, 且催化剂具有较优的催化和结构稳定性. 本方法为构建碳氮键提供了一种有效的替代方法.
钱俊峰, 田晓婷, 吴中, 姚杰, 王慧, 周维友. 非均相含镍层状双金属氧化物催化异色满与芳伯胺的高效氧化偶联[J]. 有机化学, 2021, 41(9): 3668-3674.
Junfeng Qian, Xiaoting Tian, Zhong Wu, Jie Yao, Hui Wang, Weiyou Zhou. Efficient Oxidative Coupling of Isochroman with Primary Arylamines Catalyzed by Heterogeneous Ni-Containing Layered Double Oxide[J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3668-3674.
Entry | Catalyst | Solvent | Oxidant | 2a/1 | Temp./℃ | Conv.b/% | Sel.b/% |
---|---|---|---|---|---|---|---|
1 | Ni3Ga-LDH | Toluene | TBHP | 1 | 80 | 42 | 50 |
2 | Ni3Ga-LDO | Toluene | TBHP | 1 | 80 | 65 | 58 |
3 | Ni3Al-LDO | Toluene | TBHP | 1 | 80 | 60 | 34 |
4 | Ni3In-LDO | Toluene | TBHP | 1 | 80 | 44 | 25 |
5 | Ni3Ga-LDO | Acetonitrile | TBHP | 1 | 80 | 80 | 28 |
6 | Ni3Ga-LDO | Dioxane | TBHP | 1 | 80 | 79 | 37 |
7 | Ni3Ga-LDO | Methanol | TBHP | 1 | 80 | 60 | 28 |
8 | Ni3Ga-LDO | H2O | TBHP | 1 | 80 | Trace | — |
9 | Ni3Ga-LDO | DMSO | TBHP | 1 | 80 | Trace | — |
10 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 1 | 80 | 73 | 60 |
11 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | DTBP | 1 | 80 | Trace | — |
12 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | Na2S2O8 | 1 | 80 | Trace | — |
13 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | O2 | 1 | 80 | Trace | — |
14 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 77 | 70 |
15 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 4 | 80 | 82 | 48 |
16 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 60 | 60 | 40 |
17 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 100 | 72 | 64 |
18c | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 82 | 75 |
19d | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 94 | 34 |
20c,e | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 86 | 77 |
21c,f | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 92 | 70 |
Entry | Catalyst | Solvent | Oxidant | 2a/1 | Temp./℃ | Conv.b/% | Sel.b/% |
---|---|---|---|---|---|---|---|
1 | Ni3Ga-LDH | Toluene | TBHP | 1 | 80 | 42 | 50 |
2 | Ni3Ga-LDO | Toluene | TBHP | 1 | 80 | 65 | 58 |
3 | Ni3Al-LDO | Toluene | TBHP | 1 | 80 | 60 | 34 |
4 | Ni3In-LDO | Toluene | TBHP | 1 | 80 | 44 | 25 |
5 | Ni3Ga-LDO | Acetonitrile | TBHP | 1 | 80 | 80 | 28 |
6 | Ni3Ga-LDO | Dioxane | TBHP | 1 | 80 | 79 | 37 |
7 | Ni3Ga-LDO | Methanol | TBHP | 1 | 80 | 60 | 28 |
8 | Ni3Ga-LDO | H2O | TBHP | 1 | 80 | Trace | — |
9 | Ni3Ga-LDO | DMSO | TBHP | 1 | 80 | Trace | — |
10 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 1 | 80 | 73 | 60 |
11 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | DTBP | 1 | 80 | Trace | — |
12 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | Na2S2O8 | 1 | 80 | Trace | — |
13 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | O2 | 1 | 80 | Trace | — |
14 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 77 | 70 |
15 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 4 | 80 | 82 | 48 |
16 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 60 | 60 | 40 |
17 | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 100 | 72 | 64 |
18c | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 82 | 75 |
19d | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 94 | 34 |
20c,e | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 86 | 77 |
21c,f | Ni3Ga-LDO | 1,1,2,2-Tetrachloroethane | TBHP | 2 | 80 | 92 | 70 |
Entry | Catalyst | Additive | Conv.b/% | Sel.b/% |
---|---|---|---|---|
1 | Ni3Ga-LDO | — | 86 | 77 |
2 | — | — | 52 | 38 |
3c | Ni3Ga-LDO (air) | — | 79 | 13 |
4 | Mg3Ga-LDO | — | Trace | — |
5d | Ni2(AcO)2 | — | 76 | 39 |
6 | Ni3Ga-LDO | BHTe | 13 | 63 |
7 | Ni3Ga-LDO | TEMPOe | 82 | 52 |
Entry | Catalyst | Additive | Conv.b/% | Sel.b/% |
---|---|---|---|---|
1 | Ni3Ga-LDO | — | 86 | 77 |
2 | — | — | 52 | 38 |
3c | Ni3Ga-LDO (air) | — | 79 | 13 |
4 | Mg3Ga-LDO | — | Trace | — |
5d | Ni2(AcO)2 | — | 76 | 39 |
6 | Ni3Ga-LDO | BHTe | 13 | 63 |
7 | Ni3Ga-LDO | TEMPOe | 82 | 52 |
[1] |
(a) Xu, Z.; Zheng, Y.; Wang, Z.; Shao, X.; Wang, Y. Chem. Commun. 2019, 55, 15089.
doi: 10.1039/C9CC08622F |
(b) Nasresfahani, Z.; Kassaee, M. Z. Appl. Organomet. Chem. 2021, 35(1), e6032.
|
|
(c) Luo, N. H.; Zhong, Y. H.; Wen, H. L.; Luo, R. ACS Omega 2020, 5, 27723.
doi: 10.1021/acsomega.0c04192 |
|
[2] |
(a) Ghorai, M. K.; Nanaji, Y. J. Org. Chem. 2013, 78, 3867.
doi: 10.1021/jo400287a pmid: 23548056 |
(b) Larsen, A. F.; Ulven, T. Chem. Commun. 2014, 50, 4997.
doi: 10.1039/C3CC48642G pmid: 23548056 |
|
(c) Xie, J. W.; Wang, X. C.; Wu, F. T.; Zhang, J. Chin. J. Org. Chem. 2019, 39, 3026. (in Chinese).
doi: 10.6023/cjoc201907051 pmid: 23548056 |
|
( 谢建伟, 汪小创, 吴丰田, 张洁, 有机化学, 2019, 39, 3026.)
pmid: 23548056 |
|
(d) Yao, D. D.; Zhang, J. L.; Xu, L. Chin. J. Org. Chem. 2020, 40, 1673. (in Chinese).
doi: 10.6023/cjoc201912038 pmid: 23548056 |
|
( 姚丹丹, 张金利, 徐亮, 有机化学, 2020, 40, 1673.)
pmid: 23548056 |
|
[3] |
(a) Irrgang, T.; Kempe, R. Chem. Rev. 2020, 120, 9583.
doi: 10.1021/acs.chemrev.0c00248 |
(b) Montes-Andrés, H.; Leo, P.; Muñoz, A.; Rodríguez-Diéguez, A.; Orcajo, G.; Choquesillo-Lazarte, D.; Martos, C.; Martínez, F.; Botas, J. A.; Calleja, G. Inorg. Chem. 2020, 59, 15733.
doi: 10.1021/acs.inorgchem.0c02127 |
|
(c) Bhoge, B. A.; Mala, P.; Kurian, J. S.; Srinivasan, V.; Saraogi, I. Chem. Commun. 2020, 56, 13832.
doi: 10.1039/D0CC05492E |
|
(d) Ravi, K.; Advani, J. H.; Bankar, B. D.; Singh, A. S.; Biradar, A. V. New J. Chem. 2020, 44, 18714.
doi: 10.1039/D0NJ04673F |
|
(e) Petersen, A. R.; Lauridsen, J. M. V.; Lee, J. W. Eur. J. Org. Chem. 2020, 47, 7368.
|
|
(f) Yan, F.; Cai, S.; Wen, W.; Wen, W.; Li, B. J.; Wang, L. S.; Zhu, L. Chin. J. Org. Chem. 2020, 40, 1874. (in Chinese).
doi: 10.6023/cjoc201912031 |
|
( 严沣, 蔡爽, 闻武, 文蔚, 李博解, 汪连生, 朱磊, 有机化学, 2020, 40, 1874.)
|
|
[4] |
(a) Aneeja, T.; Neetha, M.; Afsinaa, C. M. A.; Anilkumar, G. RSC Adv. 2020, 10, 34429.
doi: 10.1039/D0RA06518H pmid: 23298175 |
(b) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
doi: 10.1039/b918763b pmid: 23298175 |
|
(c) Wang, G.; Wang, J. T.; Zhao, B.; Chen, H.; Zhang, P. K.; Han, S. L. Tetrahedron Lett. 2020, 61, 151426.
doi: 10.1016/j.tetlet.2019.151426 pmid: 23298175 |
|
(d) Zhang, X. L.; Pan, G. F.; Zhu, X. Q.; Guo, R. L.; Gao, Y. R.; Wang, Y. Q. Org. Lett. 2019, 21, 2731.
doi: 10.1021/acs.orglett.9b00695 pmid: 23298175 |
|
(e) Baslé, O.; Li, C. J. Chem. Commun. 2009, 27, 4124.
pmid: 23298175 |
|
(f) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
doi: 10.1021/ja211697s pmid: 23298175 |
|
(g) Wusiman, A.; Hudabaierdi, R. Tetrahedron Lett. 2019, 60, 681.
doi: 10.1016/j.tetlet.2019.01.058 pmid: 23298175 |
|
(h) Liu, Y. X.; Wang, C.; Xue, D.; Xiao, M.; Li, C. Q.; Xiao, J. L. Chem.-Eur. J. 2017, 23, 3051.
pmid: 23298175 |
|
(i) Brzozowski, M.; Forni, J. A.; Savage, G. P.; Polyzos, A. Chem. Commun. 2015, 51, 334.
doi: 10.1039/C4CC07913B pmid: 23298175 |
|
(j) Sun, Y. M.; Ding, Q. F.; Yu, Y.; He, Y. D.; Huang, F. Chin. J. Org. Chem. 2019, 39, 3363. (in Chinese).
doi: 10.6023/cjoc201906026 pmid: 23298175 |
|
( 孙义明, 丁奇峰, 于杨, 何益得, 黄菲, 有机化学, 2019, 39, 3363.)
pmid: 23298175 |
|
(k) Rana, P.; Gaur, R.; Gupta, R.; Arora, G.; Jayashree, A.; Sharama, R. K. Chem. Commun. 2019, 55, 7402.
doi: 10.1039/C9CC02386K pmid: 23298175 |
|
(l) Xie, J.; Li, H. M.; Zhou, J. C.; Cheng, Y. X.; Zhu, C. J. Angew. Chem. Int. Ed. 2012, 51, 1252.
doi: 10.1002/anie.201107605 pmid: 23298175 |
|
(m) Ratnikov, M. O.; Doyle, M. P.; J. Am. Chem. Soc. 2013, 135, 1549.
doi: 10.1021/ja3113559 pmid: 23298175 |
|
(n) Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
doi: 10.1021/acs.joc.8b00203 pmid: 23298175 |
|
(o) Kumar, R. A.; Saidulu, G.; Prasad, K. R.; Kumar, G. S.; Sridhar, B.; Reddy, K. R. Adv. Synth. Catal. 2012, 354, 2985.
doi: 10.1002/adsc.v354.16 pmid: 23298175 |
|
(p) Cao, M.; Mao, Y.; Huang, J. C.; Ma, Y. D.; Liu, L. Tetrahedron Lett. 2019, 60, 1075.
doi: 10.1016/j.tetlet.2019.03.032 pmid: 23298175 |
|
[5] |
(a) Martin, P.; Consroe, P. Science 1976, 194, 965.
pmid: 982057 |
(b) Groot, M. J. D.; Alex, A. A.; Jones, B. C. J. Med. Chem. 2002, 45, 1983.
doi: 10.1021/jm0110791 pmid: 982057 |
|
(c) Yamaori, S.; Kushihara, M.; Yamamoto, I.; Watanabe, Y. Biochem. Pharmacol. 2010, 79, 1691.
doi: 10.1016/j.bcp.2010.01.028 pmid: 982057 |
|
[6] |
(a) Lehmann, F.; Pettersen, A.; Currier, E. A.; Sherbukhin, V.; Olsson, R.; Hacksell, U., Luthman, K. J. Med. Chem. 2006, 49, 2232.
doi: 10.1021/jm051121i |
(b) Maier, C. A.; Wünsch, B. J. Med. Chem. 2002, 45, 438.
doi: 10.1021/jm010992z |
|
[7] |
Feng, J.; Lv, M. F.; Lu, G. P.; Cai, C. Org. Chem. Front. 2015, 2, 60.
doi: 10.1039/C4QO00293H |
[8] |
Chen, D.; Pan, F.; Gao, J.; Yang, J. Synlett 2013, 24, 2085.
doi: 10.1055/s-00000083 |
[9] |
(a) Zhou, W. Y.; Lu, W. M. Z.; Wang, H.; Xia, Z. Z.; Zhai, S. Y.; Zhang, Z.; Ma, Y. J.; He, M. Y.; Chen, Q. Appl. Catal. A, Gen. 2020, 604, 117771.
doi: 10.1016/j.apcata.2020.117771 |
(b) Sun, Z. H.; Xia, Z. Z.; Wang, A. W.; Wang, H.; Zhang, Z.; Zhou, W. Y.; Qian, J. F.; He, M. Y. Tetrahedron Lett. 2020, 61, 152254.
doi: 10.1016/j.tetlet.2020.152254 |
|
[10] |
Chen, Z. W.; Liu, B. T.; Liang, P.; Luo, H. Q.; Zheng, J.; Wen, X. W.; Liu, T. G.; Luo, G. T.; Ye, M. ACS Omega 2019, 4, 281.
doi: 10.1021/acsomega.8b03353 |
[11] |
Kumar, R. A.; Maheswari, C. U.; Ghantasala, S.; Jyothi, C.; Reddy, K. R. Adv. Synth. Catal. 2011, 353, 401.
doi: 10.1002/adsc.201000580 |
[1] | 魏文婷, 李壮壮, 李婉迪, 李嘉琪, 石先莹. 纯水及空气中芳香羧酸和丙烯酸酯氧化偶联构筑苯酞的绿色方法[J]. 有机化学, 2023, 43(3): 1177-1186. |
[2] | 沈梦涵, 李来强, 周泉, 王洁慧, 王磊. 可见光诱导下喹喔啉酮与吡咯衍生物的氧化偶联[J]. 有机化学, 2023, 43(2): 697-704. |
[3] | 霍炳豪, 郭聪慧, 徐占辉. Mn(acac)3促进烯醇酯与亚磷酸酯的自由基氧化偶联反应合成β-酮膦酸酯[J]. 有机化学, 2023, 43(11): 3989-3996. |
[4] | 赵健铭, 朱佳顺, 沈佳斌, 张怡岚, 李万梅. 光催化氧化交叉偶联制备对称/不对称硫代磺酸酯[J]. 有机化学, 2022, 42(9): 2940-2946. |
[5] | 陈伟, 刘强. 烯醇类化合物氧化偶联反应研究进展[J]. 有机化学, 2021, 41(9): 3414-3430. |
[6] | 张晓平, 金桂勇, 陈芝飞, 王清福, 赵森森, 武志勇, 万帅, 席高磊, 赵旭. 吡嗪-噻唑联芳类化合物的合成及抗氧化性能研究[J]. 有机化学, 2021, 41(6): 2445-2453. |
[7] | 杨振华, 祝家楠, 文彩月, 葛迎香, 赵圣印. 马来酰亚胺双键参与的官能化反应研究进展[J]. 有机化学, 2019, 39(9): 2412-2427. |
[8] | 陈伟, 郭人予, 龚建贤, 杨震. 基于分子内交叉氧化偶联反应来非对映选择性构建全碳季碳中心[J]. 有机化学, 2019, 39(1): 238-248. |
[9] | 刘宏, 董慧茹, 安锐, 唐渝, 许开天, 张渊明. 通过Barbier-Grignard型反应合成1,3-二芳基或二烷基-2H-异吲哚-4,7-二酮[J]. 有机化学, 2018, 38(8): 2008-2016. |
[10] | 李长胜, 邹玉龙, 贾长青, 覃兆海, 马永强. 偶氮桥联的1,3,5-多取代三唑类化合物的合成及抑菌活性[J]. 有机化学, 2018, 38(6): 1500-1506. |
[11] | 刘迪, 张成慧, 韩楠, 杜萌萌, 张效露, 赵朋杉, 杨萍. 胺-胺氧化偶联合成亚胺的研究进展[J]. 有机化学, 2018, 38(6): 1350-1363. |
[12] | 徐利革, 黄亿, 刘炳艮, 牛云宏, 火星. Pd催化下烯烃、炔烃及芳烃的氧化偶联反应研究进展[J]. 有机化学, 2018, 38(4): 812-824. |
[13] | 闫溢哲, 崔畅, 李政. 低价碘催化的氧化偶联反应研究进展[J]. 有机化学, 2018, 38(10): 2501-2518. |
[14] | 王刚, 郭燕, 吕颖, 王喜存, 权正军. 2,3-二氯-5,6-二氰基-1,4-苯醌促进的3,4-二氢嘧啶硫酮的氧化偶联反应合成1,2-二嘧啶基二硫醚[J]. 有机化学, 2016, 36(6): 1375-1381. |
[15] | 张翔, 丛颖, 林光宇, 郭旭亮, 曹阳, 雷坤华, 杜云飞. 有机三价碘试剂在杂环化合物合成中的应用进展[J]. 有机化学, 2016, 36(11): 2513-2529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||