有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2750-2759.DOI: 10.6023/cjoc202102015 上一篇 下一篇
研究论文
陈任宏a,*(), 吴桂贞a, 杨凯c,*(), 叶斌a, 陈庆凤a, 汪朝阳b,*()
收稿日期:
2021-02-02
修回日期:
2021-03-22
发布日期:
2021-04-16
通讯作者:
陈任宏, 杨凯, 汪朝阳
基金资助:
Renhong Chena(), Guizhen Wua, Kai Yangc(), Bin Yea, Qingfeng Chena, Zhaoyang Wangb()
Received:
2021-02-02
Revised:
2021-03-22
Published:
2021-04-16
Contact:
Renhong Chen, Kai Yang, Zhaoyang Wang
Supported by:
文章分享
以3,4-二卤-2(5H)-呋喃酮、磺酰肼和羰基化合物为起始原料, 利用一锅法策略同时构建一个C—N键和一个 C=N键, 以良好收率合成一系列N-2(5H)-呋喃酮基磺酰腙类化合物. 这种无需金属催化的转化在室温下就可实现, 且具有好的底物适用性和选择性. 即使对于Csp2—Cl型的3,4-二氯-2(5H)-呋喃酮类底物, 这种绿色合成方法也能提供令人满意的产率. 重要的是, 这种方法对多个呋喃酮底物可实现克级反应制备.
陈任宏, 吴桂贞, 杨凯, 叶斌, 陈庆凤, 汪朝阳. 一锅法合成N-呋喃酮基磺酰腙类化合物[J]. 有机化学, 2021, 41(7): 2750-2759.
Renhong Chen, Guizhen Wu, Kai Yang, Bin Ye, Qingfeng Chen, Zhaoyang Wang. One-Pot Synthesis ofN-Furanonyl Sulfonyl Hydrazone Compounds[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2750-2759.
Entry | Additives (the first step) | Acid (the second step) | Yieldb/% |
---|---|---|---|
1 | 2.0 equiv. K2CO3 | 6.0 equiv. HCl | Trace |
2 | 2.0 equiv. K2CO3, 0.1 equiv. DMAP | 6.0 equiv. HCl | 52 |
3 | 2.0 equiv. K2CO3, 0.2 equiv. DMAP | 6.0 equiv. HCl | 65 |
4 | 2.0 equiv. K2CO3, 0.3 equiv. DMAP | 6.0 equiv. HCl | 79 |
5 | 2.0 equiv. K2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 86 |
6 | 2.0 equiv. K2CO3, 0.5 equiv. DMAP | 6.0 equiv. HCl | 85 |
7 | 2.0 equiv. Cs2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 72 |
8 | 2.0 equiv. Na2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 83 |
9 | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 87 |
10 | 1.0 equiv. K2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 70 |
11 | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 8.0 equiv. HCl | 89 |
12 | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 10.0 equiv. HCl | 87 |
13c | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 8.0 equiv. HCl | 53 |
Entry | Additives (the first step) | Acid (the second step) | Yieldb/% |
---|---|---|---|
1 | 2.0 equiv. K2CO3 | 6.0 equiv. HCl | Trace |
2 | 2.0 equiv. K2CO3, 0.1 equiv. DMAP | 6.0 equiv. HCl | 52 |
3 | 2.0 equiv. K2CO3, 0.2 equiv. DMAP | 6.0 equiv. HCl | 65 |
4 | 2.0 equiv. K2CO3, 0.3 equiv. DMAP | 6.0 equiv. HCl | 79 |
5 | 2.0 equiv. K2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 86 |
6 | 2.0 equiv. K2CO3, 0.5 equiv. DMAP | 6.0 equiv. HCl | 85 |
7 | 2.0 equiv. Cs2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 72 |
8 | 2.0 equiv. Na2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 83 |
9 | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 87 |
10 | 1.0 equiv. K2CO3, 0.4 equiv. DMAP | 6.0 equiv. HCl | 70 |
11 | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 8.0 equiv. HCl | 89 |
12 | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 10.0 equiv. HCl | 87 |
13c | 1.5 equiv. K2CO3, 0.4 equiv. DMAP | 8.0 equiv. HCl | 53 |
[1] |
Acharjya, A.; Longworth-Dunbar, L.; Roeser, J.; Pachfule, P.; Thomas, A. J. Am. Chem. Soc. 2020, 142,14033.
doi: 10.1021/jacs.0c04570 |
[2] |
Chen,J. -J.; Sun,Z. -Z.; Xiao,F. -H.; Deng,G. -J. Green Chem. 2020, 22,6778.
doi: 10.1039/D0GC02691C |
[3] |
Cheng,L. -J.; Zhao,S. -L.; Mankad,N. P. Angew. Chem.,Int. Ed. 2021, 60,2094.
doi: 10.1002/anie.v60.4 |
[4] |
(a) Shaabani, S.; Domling, A. Angew. Chem.,Int. Ed. 2018, 57,16266.
doi: 10.1002/anie.201811129 |
(b) Wang, X.; Li, G.; Li,X. -J.; Zhu,D. -R.; Shen,R. -W. Org. Chem. Front. 2021, 8,297.
doi: 10.1039/D0QO01294G |
|
(c) Gao, G.; Wang, P.; Liu, P.; Zhang,W. -H.; Mo,L. -P.; Zhang,Z. -H. Chin. J. Org. Chem. 2018, 38,846 (in Chinese).
doi: 10.6023/cjoc201711014 |
|
( 高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38,846.)
|
|
[5] |
(a) Jiang, N.; Fang, Y.; Fang, Y.; Wang,S. -Y.; Ji,S. -J. Org. Chem. Front. 2019, 6,654.
doi: 10.1039/C8QO01245H |
(b) Zhang, M.; Chen,M. -N.; Zhang,Z. -H. Adv. Synth. Catal. 2019, 361,5182.
doi: 10.1002/adsc.v361.22 |
|
(c) Zhang, M.; Fu,Q. -Y.; Gao, G.; He,H. -Y.; Zhang, Y.; Wu,Y. -S.; Zhang,Z. -H. ACS Sustainable Chem. Eng. 2017, 5,6175.
doi: 10.1021/acssuschemeng.7b01102 |
|
[6] |
Sousa,A. C.; Santos, I.; Piedade,M. F.M.M.; Martins,L. O.; Robalo,M. P. Adv. Synth. Catal. 2020, 362,3380.
doi: 10.1002/adsc.v362.16 |
[7] |
Mendez, Y.; De Armas, G.; Perez, I.; Rojas, T.; Valdes-Tresanco,M. E.; Izquierdo, M.; Alonso del Rivero, M.; Alvarez-Ginarte, Y.; Valiente,P. A.; Soto, C.; de Leon, L.; Vasco,A. V.; Scott,W. L.; Westermann, B.; Gonzalez-Bacerio, J.; Rivera,D. G. Eur. J. Med. Chem. 2019, 163,481.
doi: 10.1016/j.ejmech.2018.11.074 |
[8] |
(a) Yu, Y.; Lu,W. -F.; Yang,Z. -J.; Wang, N.; Yu,X. -Q. Bioorg. Chem. 2021,107, 104534.
|
(b) Hao, C.; Nie, L.; Han, X.; Zhang, Y.; Sun,K. -L.; Shi, L.; Cui,G. -H.; Meng, W. Chin. J. Org. Chem. 2021, 41,819 (in Chinese).
doi: 10.6023/202004018 |
|
( 韩超, 聂磊, 韩晓, 张岩, 孙克磊, 石磊, 崔广华, 孟伟, 有机化学, 2021, 41,819.)
|
|
[9] |
Ji,H. -Y.; Wang, B.; Pan, L.; Li,Y. -S. Angew. Chem.,Int. Ed. 2018, 57,16888.
doi: 10.1002/anie.v57.51 |
[10] |
Xiao, X.; Zeng, J.; Fang, J.; Sun,J. -C.; Li, T.; Song,Z. -J.; Cai, L.; Wan, Q. J. Am. Chem. Soc. 2020, 142,5498.
doi: 10.1021/jacs.0c00447 |
[11] |
Pando, O.; Stark, S.; Denkert, A.; Porzel, A.; Preusentanz, R.; Wessjohann,L. A. J. Am. Chem. Soc. 2011, 133,7692.
doi: 10.1021/ja2022027 |
[12] |
Echemendia, R.; de La Torre,A. F.; Monteiro,J. L.; Pila, M.; Correa,A. G.; Westermann, B.; Rivera,D. G.; Paixao,M. W. Angew. Chem.,Int. Ed. 2015, 54,7621.
doi: 10.1002/anie.201412074 |
[13] |
Li,X. -W.; Liu,X. -H.; Chen,H. -J.; Wu,W. -Q.; Qi,C. -R.; Jiang,H. F. Angew. Chem.,Int. Ed. 2014, 53,14485.
doi: 10.1002/anie.201405058 |
[14] |
Xia, Y.; Wang,J. -B. Chem. Soc. Rev. 2017, 46,2306.
doi: 10.1039/C6CS00737F |
[15] |
Zhu, J.; Mao, M.; Ji,H. -J.; Xu,J. -Y.; Wu, L. Org. Lett. 2017, 19,1946.
doi: 10.1021/acs.orglett.7b00213 |
[16] |
Ishikawa, T.; Kimura, M.; Kumoi, T.; Iida, H. ACS Catal. 2017, 7,4986.
doi: 10.1021/acscatal.7b01535 |
[17] |
Liu,Z. -Q.; Wu, P.; He, Y.; Yang, T.; Yu,Z. -K. Adv. Synth. Catal. 2018, 360,4381.
doi: 10.1002/adsc.v360.22 |
[18] |
Ishitobi, K.; Muto, K.; Yamaguchi, J. ACS Catal. 2019, 9,11685.
doi: 10.1021/acscatal.9b04212 |
[19] |
Xia, Y.; Wang,J. -B. J. Am. Chem. Soc. 2020, 142,10592.
doi: 10.1021/jacs.0c04445 |
[20] |
Kendall,J. D.; Rewcastle,G. W.; Frederick, R.; Mawson, C.; Denny,W. A.; Marshall,E. S.; Baguley,B. C.; Chaussade, C.; Jackson,S. P.; Shepherd,P. R. Bioorg. Med. Chem. 2007, 15,7677.
doi: 10.1016/j.bmc.2007.08.062 |
[21] |
Ma, Y.; Sun, G., Chen, D.; Peng, X.; Chen,Y. -L.; Su, Y.; Ji, Y.; Liang, J.; Wang, X.; Chen, L.; Ding, J.; Xiong, B.; Ai, J.; Geng,M. -Y.; Shen, J. J. Med. Chem. 2015, 58,2513.
doi: 10.1021/jm502018y |
[22] |
Neumann,D. M.; Cammarata, A.; Backes, G.; Palmer,G. E.; Jursic,B. S. Bioorg. Med. Chem. 2014, 22,813.
doi: 10.1016/j.bmc.2013.12.010 |
[23] |
Gunduzalp,A. B.; Ozmen,U. O.; Cevrimli,B. S.; Mamas, S.; Cete, S. Med. Chem. Res. 2014, 23,3255.
doi: 10.1007/s00044-013-0907-7 |
[24] |
James,J. P.; Bhat,K. I.; More,U. A.; Joshi,S. D. Med. Chem. Res. 2018, 27,546.
doi: 10.1007/s00044-017-2081-9 |
[25] |
Tripathi,A. C.; Upadhyay, S.; Paliwal, S.; Saraf,S. K. Med. Chem. Res. 2018, 27,1485.
doi: 10.1007/s00044-018-2167-z |
[26] |
Guo,X. K.; Yang, Q.; Xu, J.; Zhang, L.; Chu,H. X.; Yu, P.; Zhu,Y. Y.; Wei,J. L.; Chen,W. L.; Zhang,Y. Z.; Zhang,X. J.; Sun,H. P.; Tang,Y. Q.; You,Q. D. Bioorg. Med. Chem. 2013, 21,6466.
doi: 10.1016/j.bmc.2013.08.041 |
[27] |
Nunes,I. K.D.; de Souza,E. T.; Martins,I. R.R.; Barbosa, G.; de Moraes,M. O.; Medeiros,M. D.; Silva,S. W.D.; Balliano,T. L.; da Silva,B. A.; Silva,P. M.R.; Carvalho,V. D.; Martins,M. A.; Lima,L. M. Eur. J. Med. Chem. 2020, 204,112492.
doi: 10.1016/j.ejmech.2020.112492 |
[28] |
Arshad,M. N.; Sheikh,T. A.; Rahman,M. M.; Asiri,A. M.; Marwani,H. M.; Awual,M. R. J. Organomet. Chem. 2017, 827,49.
doi: 10.1016/j.jorganchem.2016.11.009 |
[29] |
Asiri,A. M.; Hussain,M. M.; Arshad,M. N.; Rahman,M. M. New J. Chem. 2018, 42,4465.
doi: 10.1039/C7NJ05109C |
[30] |
Aslan,H. G.; Karacan, N. Med. Chem. Res. 2013, 22,1330.
doi: 10.1007/s00044-012-0104-0 |
[31] |
Hassine,B. B.; Kacem, Y. Tetrahedron Lett. 2013, 54,4023.
doi: 10.1016/j.tetlet.2013.05.082 |
[32] |
(a) Wei,M. -X.; Zhang, J.; Ma,F. -L.; Yu,J. -Y.; Luo, W.; Li,X. -Q. Eur. J. Med. Chem. 2018, 155,165.
doi: 10.1016/j.ejmech.2018.05.056 |
(b) Wang,B. -W.; Liu, Y.; Hao,Z. -F.; Hou,J. -Q.; Li,J. -Y.; Li,S. -T.; Pan,S. -H.; Zeng,M. -H.; Wang,Z. -Y. Chin. J. Org. Chem. 2018, 38,1872 (in Chinese).
doi: 10.6023/cjoc201803053 |
|
( 王柏文, 刘园, 郝志峰, 侯佳琦, 李健怡, 李舒婷, 潘思慧, 曾铭豪, 汪朝阳, 有机化学, 2018, 38,1872.)
|
|
[33] |
Shimoi, M.; Maeda, K.; Geib,S. J.; Curran,D. P.; Taniguchi, T. Angew. Chem.,Int. Ed. 2019, 58,6357.
doi: 10.1002/anie.v58.19 |
[34] |
Trost,B. M.; Gnanamani, E.; Kalnmals,C. A.; Hung,C. I.; Tracy,J. S. J. Am. Chem. Soc. 2019, 141,1489.
doi: 10.1021/jacs.8b13367 |
[35] |
Zhao,M. -N.; Zhang, Y.; Ge, N.; Yu, L.; Wang, S.; Ren,Z. -H.; Guan,Z. -H. Org. Chem. Front. 2020, 7,763.
doi: 10.1039/C9QO01486A |
[36] |
Wang, Y.; Chen, B.; He,X. -B.; Gui,J. -H. J. Am. Chem. Soc. 2020, 142,5007.
doi: 10.1021/jacs.0c00363 |
[37] |
Cao, L.; Luo,S. -H.; Wu,H. -Q.; Chen,L. -Q.; Jiang, K.; Hao,Z. -F.; Wang,Z. -Y. Adv. Synth. Catal. 2017, 359,2961.
doi: 10.1002/adsc.v359.17 |
[38] |
Cao, L.; Li,J. -X.; Wu,H. -Q.; Jiang, K.; Hao,Z. -F.; Luo,S. -H.; Wang,Z. -Y. ACS Sustainable Chem. Eng. 2018, 6,4141.
|
[39] |
Wu,H. -Q.; Luo,S. -H.; Cao, L.; Shi,H. -N.; Wang,B. -W.; Wang,Z. -Y. Asian J. Org. Chem. 2018, 7,2479.
doi: 10.1002/ajoc.v7.12 |
[40] |
Yang, K.; Gao,J. -J.; Luo,S. -H.; Wu,H. -Q.; Pang,C. -M.; Wang,B. -W.; Chen,X. -Y.; Wang,Z. -Y. RSC Adv. 2019, 9,19917.
doi: 10.1039/C9RA03403J |
[41] |
Wu,H. -Q.; Yang, K.; Luo,S. -H.; Wu,X. -Y.; Wang, N.; Chen,S. -H.; Wang,Z. -Y. Eur. J. Org. Chem. 2019, 28,4572.
|
[42] |
Wu,H. -Q.; Yang, K.; Chen,X. -Y.; Mani, A.; Wang, N.; Chen,S. -H.; Wang,Z. -Y. Green Chem. 2019, 21,3782.
doi: 10.1039/C9GC01740B |
[43] |
Wu,Y. -C.; Luo,S. -H.; Mei,W. -J.; Cao, L.; Wu,H. -Q.; Wang,Z. -Y. Eur. J. Med. Chem. 2017, 139,84.
doi: 10.1016/j.ejmech.2017.08.005 |
[44] |
Wu,Y. -C.; Cao, L.; Mei,W. -J.; Wu,H. -Q.; Luo,S. -H.; Zhan, H.-Y, Wang,Z. -Y. Chem. Biol. Drug Des. 2018, 92,1232.
doi: 10.1111/cbdd.2018.92.issue-1 |
[45] |
Luo,S. -H.; Yang, K.; Lin,J. -Y.; Gao,J. -J.; Wu,X. -Y.; Wang,Z. -Y. Org. Biomol. Chem. 2019, 17,5138.
doi: 10.1039/C9OB00736A |
[46] |
Namba, K.; Shoji, I.; Nishizawa, M.; Tanino, K. Org. Lett. 2009, 11,4970.
doi: 10.1021/ol9021194 |
[47] |
Zeng,L. -W.; Lai,Z. -C.; Cui,S. -L. J. Org. Chem. 2018, 83,14834.
doi: 10.1021/acs.joc.8b02715 |
[1] | 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024, 44(2): 378-397. |
[2] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[3] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[4] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[5] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[6] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[7] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[8] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[9] | 陈珊, 陈志林, 胡琼, 蒙艳双, 黄悦, 陶萍芳, 卢丽如, 黄国保. 含双硫脲基团分子钳在非极性溶剂中识别中性分子[J]. 有机化学, 2024, 44(1): 277-281. |
[10] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[11] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[12] | 马翠云, 罗海澜, 张福华, 郭丹, 陈树兴, 王飞. 3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究[J]. 有机化学, 2024, 44(1): 216-223. |
[13] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[14] | 李阳, 袁锦鼎, 赵頔. 低共熔溶剂1,3-二甲基脲/L-(+)-酒石酸中(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成[J]. 有机化学, 2023, 43(9): 3268-3276. |
[15] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||