有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3268-3276.DOI: 10.6023/cjoc202301015 上一篇 下一篇
研究论文
收稿日期:
2023-01-16
修回日期:
2023-04-19
发布日期:
2023-05-11
基金资助:
Yang Li(), Jinding Yuan, Di Zhao
Received:
2023-01-16
Revised:
2023-04-19
Published:
2023-05-11
Contact:
E-mail: Supported by:
文章分享
利用环境友好且无毒无害的1,3-二甲基脲(DMU)/L-(+)-酒石酸(LTA) (n∶n=7∶3)形成的低共熔溶剂(DES)作为反应介质和催化剂使2-甲基喹啉-3-羧酸与芳醛直接进行有效的乙烯化反应, 成功实现了(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成. 所开发的合成方法具有温和且环境友好的反应条件, 实验操作简便, 后处理简单和收率高等优点, 具有很好的实际应用价值.
李阳, 袁锦鼎, 赵頔. 低共熔溶剂1,3-二甲基脲/L-(+)-酒石酸中(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成[J]. 有机化学, 2023, 43(9): 3268-3276.
Yang Li, Jinding Yuan, Di Zhao. Deep Eutectic Solvent of 1,3-Dimethylurea/L-(+)-Tartaric Acid for the Green Synthesis of (E)-2-Styrylquinoline-3-carboxylic Acid Derivatives[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3268-3276.
Entry | Reaction medium (molar ratio) | Temp./℃ | Time/h | Yieldb/% |
---|---|---|---|---|
1 | ChCl/urea (1∶2) | 80 | 8 | NRc |
2 | ChCl/PEG (1∶2) | 80 | 10 | NRc |
3 | ChCl/glycerol (1∶2) | 80 | 10 | 11 |
4 | ChCl/oxalic acid (1∶1) | 80 | 8 | 38 |
5 | ChCl-malonic acid (1∶1) | 90 | 8 | 26 |
6 | ChCl/citric acid (2∶1) | 90 | 8 | 41 |
7 | DMU/citric acid (3∶2) | 90 | 8 | 33 |
8 | ChCl/LTA (1∶1) | 90 | 8 | 45 |
9 | DMU/LTA (3∶1) | 80 | 8 | 69 |
10 | DMU/LTA (2∶1) | 80 | 8 | 74 |
11 | DMU/LTA (1∶1) | 80 | 8 | 52 |
12 | DMU/LTA (7∶3) | 80 | 6 | 84 |
13 | DMU/LTA (7∶3) | 70 | 6 | 78 |
14 | DMU/LTA (7∶3) | 90 | 6 | 81 |
15 | Ac2O | 150 | 30 | 46 |
16 | LTA in CH2Cl2 | 85 | 24 | 15 |
17 | DMU/LTAd | 80 | 6 | 84 |
18 | DMU/LTAe | 80 | 6 | 81 |
19 | DMU/LTAf | 80 | 6 | 79 |
20 | DMU/LTAg | 80 | 6 | 67 |
Entry | Reaction medium (molar ratio) | Temp./℃ | Time/h | Yieldb/% |
---|---|---|---|---|
1 | ChCl/urea (1∶2) | 80 | 8 | NRc |
2 | ChCl/PEG (1∶2) | 80 | 10 | NRc |
3 | ChCl/glycerol (1∶2) | 80 | 10 | 11 |
4 | ChCl/oxalic acid (1∶1) | 80 | 8 | 38 |
5 | ChCl-malonic acid (1∶1) | 90 | 8 | 26 |
6 | ChCl/citric acid (2∶1) | 90 | 8 | 41 |
7 | DMU/citric acid (3∶2) | 90 | 8 | 33 |
8 | ChCl/LTA (1∶1) | 90 | 8 | 45 |
9 | DMU/LTA (3∶1) | 80 | 8 | 69 |
10 | DMU/LTA (2∶1) | 80 | 8 | 74 |
11 | DMU/LTA (1∶1) | 80 | 8 | 52 |
12 | DMU/LTA (7∶3) | 80 | 6 | 84 |
13 | DMU/LTA (7∶3) | 70 | 6 | 78 |
14 | DMU/LTA (7∶3) | 90 | 6 | 81 |
15 | Ac2O | 150 | 30 | 46 |
16 | LTA in CH2Cl2 | 85 | 24 | 15 |
17 | DMU/LTAd | 80 | 6 | 84 |
18 | DMU/LTAe | 80 | 6 | 81 |
19 | DMU/LTAf | 80 | 6 | 79 |
20 | DMU/LTAg | 80 | 6 | 67 |
Entry | Compd. | Ar | Yieldb/% | m.p./℃ |
---|---|---|---|---|
1 | 3a | C6H5 | 84 | 218~220 |
2 | 3b | 4-MeC6H4 | 81 | 198~199 |
3 | 3c | 3-MeOC6H4 | 80 | 184~185 |
4 | 3d | 2,3-(MeO)2C6H3 | 62 | 192~194 |
5 | 3e | 2,4-(MeO)2C6H3 | 66 | 221~222 |
6 | 3f | 2,4,5-(MeO)3C6H2 | 63 | 239~241 |
7 | 3g | 3,4,5-(MeO)3C6H2 | 76 | 211~213 |
8 | 3h | 4-ClC6H4 | 85 | 257~258 |
9 | 3i | 3,5-Cl2C6H3 | 84 | 198~200 |
10 | 3j | 3-BrC6H4 | 79 | 190~192 |
11 | 3k | 4-BrC6H4 | 87 | 238~240 |
12 | 3l | 4-CNC6H4 | 78 | 261~263 |
13 | 3m | | 82 | 175~178 |
14 | 3n | | 76 | 197~198 |
15 | 3o | | 81 | 181~182 |
16 | 3p | | 84 | 195~196 |
Entry | Compd. | Ar | Yieldb/% | m.p./℃ |
---|---|---|---|---|
1 | 3a | C6H5 | 84 | 218~220 |
2 | 3b | 4-MeC6H4 | 81 | 198~199 |
3 | 3c | 3-MeOC6H4 | 80 | 184~185 |
4 | 3d | 2,3-(MeO)2C6H3 | 62 | 192~194 |
5 | 3e | 2,4-(MeO)2C6H3 | 66 | 221~222 |
6 | 3f | 2,4,5-(MeO)3C6H2 | 63 | 239~241 |
7 | 3g | 3,4,5-(MeO)3C6H2 | 76 | 211~213 |
8 | 3h | 4-ClC6H4 | 85 | 257~258 |
9 | 3i | 3,5-Cl2C6H3 | 84 | 198~200 |
10 | 3j | 3-BrC6H4 | 79 | 190~192 |
11 | 3k | 4-BrC6H4 | 87 | 238~240 |
12 | 3l | 4-CNC6H4 | 78 | 261~263 |
13 | 3m | | 82 | 175~178 |
14 | 3n | | 76 | 197~198 |
15 | 3o | | 81 | 181~182 |
16 | 3p | | 84 | 195~196 |
[1] |
Dhanawat M.; Mehta D. K.; Das R. Mini-Rew. Med. Chem. 2021, 21, 1849.
|
[2] |
Chang F. S.; Chen W.; Wang C.; Tzeng C. C.; Chen Y. L. Bioorg. Med. Chem. 2010, 18, 124.
|
[3] |
Szczepaniak J.; Cieslik W.; Romanowicz A.; Musioł R.; Krasowska A. Int. J. Antimicrob. Agents 2017, 50, 171.
doi: 10.1016/j.ijantimicag.2017.01.044 |
[4] |
Musiol R. Curr. Pharm. Des. 2013, 19, 1835.
doi: 10.2174/1381612811319100008 |
[5] |
Kamal A.; Rahim A.; Riyaz S.; Poornachandra Y.; Balakrishna M.; Kumar C. G.; Hussaini S. M. A.; Sridhar B.; Machiraju P. K. Org. Biomol. Chem. 2015, 13, 1347.
doi: 10.1039/C4OB02277G |
[6] |
Zwaagstra M. E.; Schoenmakers S. H.; Nederkoorn P. H.; Gelens E.; Timmerman H.; Zhang M. Q. J. Med. Chem. 1998, 41, 1439.
pmid: 9554877 |
[7] |
Luczywo A.; Sauter I. P.; Ferreira T. C. S.; Cortez M.; Romanelli G. P.; Sathicq G.; Asís S. E. J. Heterocycl. Chem. 2021, 58, 822.
doi: 10.1002/jhet.v58.3 |
[8] |
Mittal R. K.; Purohit P. Anti-Cancer Agents Med. Chem. 2021, 21, 1708.
doi: 10.2174/1871520620999201124214112 |
[9] |
Latha D. S.; Yaragorla S. Eur. J. Org. Chem. 2020, 2020, 2155.
doi: 10.1002/ejoc.v2020.15 |
[10] |
Fakhfakh M. A.; Franck X.; Fournet A.; Hocquemiller R.; Figadere B. Synth. Commun. 2002, 32, 2863.
doi: 10.1081/SCC-120006472 |
[11] |
Xia H.; Liu Y.; Zhao P.; Gou S.; Wang J. Org. Lett. 2016, 18, 1796.
doi: 10.1021/acs.orglett.6b00522 |
[12] |
Rubtsov M. V.; Pershin G. N.; Yanbuktin N. A.; Pelenitsina L. A.; Gurevich T. J.; Novitskaya N. A.; Milovanova S. N.; Vichkanova S. A. J. Med. Chem. 1959, 2, 113.
doi: 10.1021/jm50009a001 |
[13] |
Mao D.; Hong G.; Wu S.; Liu X.; Yu J.; Wang L. Eur. J. Org. Chem. 2014, 2014, 3009.
doi: 10.1002/ejoc.201400073 |
[14] |
Dang H. T.; Lieu T. N.; Truong T.; Phan N. T. J. Mol. Catal. A: Chem. 2016, 420, 237.
doi: 10.1016/j.molcata.2016.04.022 |
[15] |
Pi D.; Jiang K.; Zhou H.; Sui Y.; Uozumi Y.; Zou K. RSC Adv. 2014, 4, 57875.
doi: 10.1039/C4RA10939B |
[16] |
Jamal Z.; Teo Y. C.; Lim G. S. Tetrahedron 2016, 72, 2132.
doi: 10.1016/j.tet.2016.03.004 |
[17] |
Jamal Z.; Teo Y. C. Synlett 2014, 25, 2049.
doi: 10.1055/s-00000083 |
[18] |
Yaragorla S.; Singh G.; Dada R. Tetrahedron Lett. 2015, 56, 5924.
doi: 10.1016/j.tetlet.2015.09.035 |
[19] |
Li V. M.; Gavrishova T. N.; Budyka M. F. Russ. J. Org. Chem. 2012, 48, 823.
doi: 10.1134/S1070428012060139 |
[20] |
Musiol R.; Podeszwa B.; Finster J.; Niedbala H.; Polanski J. Monatsh. Chem. 2006, 137, 1211.
doi: 10.1007/s00706-006-0513-1 |
[21] |
Xu L.; Shao Z.; Wang L.; Zhao H.; Xiao J. Tetrahedron Lett. 2014, 55, 6856.
doi: 10.1016/j.tetlet.2014.10.079 |
[22] |
Liang E.; Wang J.; Wu Y.; Huang L.; Yao X.; Tang X. Adv. Synth. Catal. 2019, 361, 3619.
doi: 10.1002/adsc.201900351 |
[23] |
Dabiri M.; Salehi P.; Baghbanzadeh M.; Nikcheh M. S. Tetrahedron Lett. 2008, 49, 5366.
doi: 10.1016/j.tetlet.2008.06.054 |
[24] |
Sarma P.; Saikia S.; Borah R. Synth. Commun. 2016, 46, 1187.
doi: 10.1080/00397911.2016.1193754 |
[25] |
Han Y.; Zhang M.; Zhang Y. Q.; Zhang Z. H. Green Chem. 2018, 20, 4891.
doi: 10.1039/C8GC02611D |
[26] |
Fu S.; Wang L.; Dong H.; Yu J.; Xu L.; Xiao J. Tetrahedron Lett. 2016, 57, 4533.
doi: 10.1016/j.tetlet.2016.08.065 |
[27] |
Smith E. L.; Abbott A. P.; Ryder K. S. Chem. Rev. 2014, 114, 11060.
doi: 10.1021/cr300162p pmid: 25300631 |
[28] |
Alonso D. A.; Baeza A.; Chinchilla R.; Guillena G.; Pastor I. M.; Ramòn D. J. Eur. J. Org. Chem. 2016, 2016, 612.
doi: 10.1002/ejoc.201501197 |
[29] |
Zheng L. L.; Wang Y. Q.; Li X. G.; Zhang W. B. Chin. J. Org. Chem. 2022, 42, 3714. (in Chinese)
doi: 10.6023/cjoc202206002 |
(郑露露, 王雨晴, 李小港, 张文彬, 有机化学, 2022, 42, 3714.)
doi: 10.6023/cjoc202206002 |
|
[30] |
Xiao L. W.; Liu G. X.; Li Z.; Ren P.; Ren L. L.; Kong J. Chin. J. Org. Chem. 2020, 40, 2988. (in Chinese)
|
(肖立伟, 刘光仙, 李政, 任萍, 任丽磊, 孔洁, 有机化学, 2020, 40, 2988.)
doi: 10.6023/cjoc202003043 |
|
[31] |
Zhang M.; Liu Y. H.; Shang Z. R.; Hu H. C.; Zhang Z. H. Catal. Commun. 2017, 88, 39.
doi: 10.1016/j.catcom.2016.09.028 |
[32] |
Zhang W. H.; Chen M. N.; Hao Y.; Jiang X.; Zhou X. L.; Zhang Z. H. J. Mol. Liq. 2019, 278, 124.
doi: 10.1016/j.molliq.2019.01.065 |
[33] |
Xu L.; Zhang W. H.; Cui Z. S.; Zhang Z. H. Curr. Organocatal. 2021, 8, 249.
|
[34] |
Upadhyay A.; Kushwaha P.; Gupta S.; Dodda R. P.; Ramalingam K.; Kant R.; Goyal N. Eur. J. Med. Chem. 2018, 154, 172.
doi: 10.1016/j.ejmech.2018.05.014 |
[35] |
Pawar P. M.; Jarag K. J.; Shankarling G. S. Green Chem. 2011, 13, 2130.
doi: 10.1039/c0gc00712a |
[36] |
Srivastava S. ChemistrySelect 2020, 5, 799.
doi: 10.1002/slct.v5.2 |
[37] |
Sanap A. K.; Shankarling G. S. RSC Adv. 2014, 4, 34938.
doi: 10.1039/C4RA05858E |
[38] |
Hu H. C.; Liu Y. H.; Li B. L.; Cui Z. S.; Zhang Z. H. RSC Adv. 2015, 5, 7720.
doi: 10.1039/C4RA13577F |
[39] |
Abbott A. P.; Boothby D.; Capper G.; Davies D. L.; Rasheed R. K. J. Am. Chem. Soc. 2004, 126, 9142.
doi: 10.1021/ja048266j |
[40] |
Bafti B.; Khabazzadeh H. J. Chem. Sci. 2014, 126, 881.
doi: 10.1007/s12039-014-0624-x |
[41] |
Wang P.; Ma F. P.; Zhang Z. H. J. Mol. Liq. 2014, 198, 259.
doi: 10.1016/j.molliq.2014.07.015 |
[42] |
Ali R.; Chinnam A. K.; Aswar V. R. Curr. Org. Chem. 2021, 25, 554.
doi: 10.2174/1385272825666210111111313 |
[43] |
Gore S.; Baskaran S.; König B. Org. Lett. 2012, 14, 4568.
doi: 10.1021/ol302034r |
[44] |
Krishnakumar V.; Vindhya N. G.; Mandal B. K.; Nawaz Khan F. R. Ind. Eng. Chem. Res. 2014, 53, 10814.
doi: 10.1021/ie501320a |
[45] |
Alvi S.; Ali R. Org. Biomol. Chem. 2021, 19, 9732.
doi: 10.1039/D1OB01618K |
[46] |
Kaminsky D.; Meltzer R. I. J. Med. Chem. 1968, 11, 160.
pmid: 5637164 |
[1] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[2] | 李硕, 王明亮, 周来运, 王兰芝. 磁性纳米负载对甲苯磺酸催化串联合成稠合多环的1,5-苯并氧氮杂䓬类化合物[J]. 有机化学, 2023, 43(11): 3977-3988. |
[3] | 程飞, 孙琪雯, 卢江溶, 王兴兰, 张吉泉. 芳基二硫醚作为自由基硫试剂构建C—S键研究进展[J]. 有机化学, 2023, 43(11): 3728-3744. |
[4] | 乃比江•赛米, 张蕾, 买地娜•沙拉木, 曾竟, 阿布都热西提•阿布力克木. 硫代磺酸酯和磺酰卤的绿色合成研究[J]. 有机化学, 2023, 43(1): 236-243. |
[5] | 潘振涛, 刘彤, 马永敏, 颜剑波, 王亚军. 布朗斯特酸/可见光氧化还原接力催化构建喹唑啉(硫)酮[J]. 有机化学, 2022, 42(9): 2823-2831. |
[6] | 张建涛, 张聪, 郑梓栋, 周鹏, 刘卫兵. 亚砜叶立德参与构建五/六元氮杂环的反应研究进展[J]. 有机化学, 2022, 42(9): 2745-2759. |
[7] | 高润烨, 左玲玲, 王芳, 李传莹, 蒋华江, 李品华, 王磊. 无外加光催化剂下可见光促进的可控有机反应进展[J]. 有机化学, 2022, 42(7): 1883-1903. |
[8] | 韩群, 徐坤, 田发宁, 黄胜阳, 曾程初. 一种利用酰胺基转移反应脱除酰基保护基的实用方法[J]. 有机化学, 2022, 42(4): 1123-1128. |
[9] | 左鸿华, 钟芳锐. 亚稳醌类分子的活性调控与仿生催化反应[J]. 有机化学, 2022, 42(3): 665-678. |
[10] | 王明亮, 尹刘燕, 温甜甜, 张晓, 高杰, 王兰芝. 多官能团化的1,5-苯并二氮杂䓬类化合物的绿色合成[J]. 有机化学, 2022, 42(1): 160-171. |
[11] | 李倩, 杨丽, 刘伟, 王天昀, 朱月杰, 杜正银. 乙酸铵催化的酚与多聚甲醛的甲酰化反应研究[J]. 有机化学, 2021, 41(5): 2038-2044. |
[12] | 李静, 郝振芳, 张凯悦, 王兰芝. 三组分串联反应一锅合成多环稠合的1,5-苯并二氮杂䓬化合物[J]. 有机化学, 2021, 41(2): 806-818. |
[13] | 肖立伟, 刘光仙, 李政, 任萍, 任丽磊, 孔洁. 低共熔溶剂促进N-取代十氢吖啶-1,8-二酮类化合物的合成[J]. 有机化学, 2020, 40(9): 2988-2993. |
[14] | 陈颖, 邓鑫, 景崤壁, 周宏伟. 碲参与的有机化学反应[J]. 有机化学, 2020, 40(12): 4147-4154. |
[15] | 赵鑫雨, 丁扬扬, 吕英涛, 康从民. 咪唑并[1,2-a]吡啶化合物绿色合成的研究进展[J]. 有机化学, 2019, 39(5): 1304-1315. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||