有机化学 ›› 2024, Vol. 44 ›› Issue (1): 251-258.DOI: 10.6023/cjoc202305018 上一篇 下一篇
研究论文
收稿日期:
2023-05-16
修回日期:
2023-08-19
发布日期:
2023-09-08
基金资助:
Huakun Wang, Xiaolong Ren, Yining Xuan()
Received:
2023-05-16
Revised:
2023-08-19
Published:
2023-09-08
Contact:
*E-mail: Supported by:
文章分享
研究了一种α,β-环氧羧酸酯与异氰酸酯之间的[3+2]环加成反应. 以溴化镁为催化剂, 通过α,β-环氧羧酸酯与异氰酸酯发生[3+2]环加成反应, 高效地合成出手性噁唑烷-2-酮. 反应具有良好的底物适应性, 对于手性环氧化合物参与的反应, 产物对映体过量值保持良好. 产物在碱性条件下开环, 合成出紫杉醇C-13侧链((2R,3S)-3-苯甲酰胺-2-羟基- 3-苯基丙酸甲酯), 光学纯度高达97% ee.
王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258.
Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258.
Entry | Cat. (x/equiv.) | Solvent | Temp./℃ | Time/h | Total yieldb/% |
---|---|---|---|---|---|
1 | NaI (0.5) | THF | 25 | 8 | 29 |
2 | KI (0.5) | THF | 25 | 8 | 4 |
3 | CuI (0.5) | THF | 25 | 8 | Trace |
4 | TBAB (0.5) | THF | 25 | 8 | 6 |
5 | CuBr (0.5) | THF | 25 | 8 | 25 |
6 | CaBr2 (0.5) | THF | 25 | 8 | 3 |
7 | AlBr3 (0.5) | THF | 25 | 8 | 5 |
8 | LiBr (0.5) | THF | 25 | 8 | 42 |
9 | NaBr (0.5) | THF | 25 | 8 | Trace |
10 | KBr (0.5) | THF | 25 | 8 | Trace |
11 | MgBr2 (0.5) | THF | 25 | 8 | 54 |
12 | MgI2 (0.5) | THF | 25 | 8 | 32 |
13 | MgBr2 (0.2) | THF | 25 | 8 | 77 |
14 | MgBr2 (0.2) | CH2Cl2 | 25 | 8 | 55 |
15 | MgBr2 (0.2) | CH2ClCH2Cl | 25 | 8 | 63 |
16 | MgBr2 (0.2) | CH3CN | 25 | 8 | 70 |
17 | MgBr2 (0.2) | Et2O | 25 | 8 | 30 |
18 | MgBr2 (0.2) | Toluene | 25 | 8 | 60 |
19 | MgBr2 (0.2) | DMF | 25 | 8 | 72 |
20 | MgBr2 (0.2) | THF | 80 | 4 | 86 |
21 | MgBr2 (0.1) | THF | 80 | 4 | 48 |
22 | MgI2 (0.5) | THF | 80 | 4 | 52 |
23 | MgI2 (0.2) | THF | 80 | 4 | 61 |
24 | LiBr (0.2) | THF | 25 | 8 | 2 |
25 | 3-羟基-N-辛基吡啶 鎓碘化物c (0.1) | THF | 80 | 10 | 9 |
26 | TBAI (0.2) 抗坏血酸(0.1) | THF | 80 | 8 | 16 |
Entry | Cat. (x/equiv.) | Solvent | Temp./℃ | Time/h | Total yieldb/% |
---|---|---|---|---|---|
1 | NaI (0.5) | THF | 25 | 8 | 29 |
2 | KI (0.5) | THF | 25 | 8 | 4 |
3 | CuI (0.5) | THF | 25 | 8 | Trace |
4 | TBAB (0.5) | THF | 25 | 8 | 6 |
5 | CuBr (0.5) | THF | 25 | 8 | 25 |
6 | CaBr2 (0.5) | THF | 25 | 8 | 3 |
7 | AlBr3 (0.5) | THF | 25 | 8 | 5 |
8 | LiBr (0.5) | THF | 25 | 8 | 42 |
9 | NaBr (0.5) | THF | 25 | 8 | Trace |
10 | KBr (0.5) | THF | 25 | 8 | Trace |
11 | MgBr2 (0.5) | THF | 25 | 8 | 54 |
12 | MgI2 (0.5) | THF | 25 | 8 | 32 |
13 | MgBr2 (0.2) | THF | 25 | 8 | 77 |
14 | MgBr2 (0.2) | CH2Cl2 | 25 | 8 | 55 |
15 | MgBr2 (0.2) | CH2ClCH2Cl | 25 | 8 | 63 |
16 | MgBr2 (0.2) | CH3CN | 25 | 8 | 70 |
17 | MgBr2 (0.2) | Et2O | 25 | 8 | 30 |
18 | MgBr2 (0.2) | Toluene | 25 | 8 | 60 |
19 | MgBr2 (0.2) | DMF | 25 | 8 | 72 |
20 | MgBr2 (0.2) | THF | 80 | 4 | 86 |
21 | MgBr2 (0.1) | THF | 80 | 4 | 48 |
22 | MgI2 (0.5) | THF | 80 | 4 | 52 |
23 | MgI2 (0.2) | THF | 80 | 4 | 61 |
24 | LiBr (0.2) | THF | 25 | 8 | 2 |
25 | 3-羟基-N-辛基吡啶 鎓碘化物c (0.1) | THF | 80 | 10 | 9 |
26 | TBAI (0.2) 抗坏血酸(0.1) | THF | 80 | 8 | 16 |
Entry | R1 | eeb/% | R2 (3) | Main product | Total yieldc/% | 4∶5d | eee/% |
---|---|---|---|---|---|---|---|
1 | C6H5 (2a) | 98 | C6H5CO (3a) | 4a | 86 | 92∶8 | 97 |
2 | 2-ClC6H4 (2b) | 97 | C6H5CO (3a) | 4b | 65 | 82∶18 | 93 |
3 | 3-ClC6H4 (2c) | 95 | C6H5CO (3a) | 4c | 90 | 80∶20 | 93 |
4 | 4-ClC6H4 (2d) | 99 | C6H5CO (3a) | 4d | 94 | 87∶13 | 93 |
5 | 4-BrC6H4 (2e) | 96 | C6H5CO (3a) | 4e | 94 | 91∶9 | 95 |
6 | 4-NCC6H4 (2f) | 98 | C6H5CO (3a) | 4f | 69 | 79∶21 | 97 |
7 | 4-O2NC6H4 (2g) | 98 | C6H5CO (3a) | 4g | 70 | 80∶20 | 98 |
8 | 4-CF3C6H4 (2h) | 98 | C6H5CO (3a) | 4h | 80 | 78∶22 | 97 |
9 | 4-CH3C6H4 (2i) | 97 | C6H5CO (3a) | 4i | 70 | 95∶5 | 97 |
10f | 4-CH3OC6H4 (2j) | — | C6H5CO (3a) | 4j | 72 | 87∶13 | — |
11f | 2-Pyridyl (2k) | — | C6H5CO (3a) | 4k | 38 | >20∶1 | — |
12 | C6H5 (2a) | 98 | 4-CH3OC6H4CO (3b) | 4l | 71 | 91∶9 | 97 |
13 | C6H5 (2a) | 98 | 4-F3CC6H4CO (3c) | 4m | 80 | 94∶6 | 98 |
14 | C6H5 (2a) | 98 | C6H5 (3d) | 4n | 45 | 83∶17 | 97 |
Entry | R1 | eeb/% | R2 (3) | Main product | Total yieldc/% | 4∶5d | eee/% |
---|---|---|---|---|---|---|---|
1 | C6H5 (2a) | 98 | C6H5CO (3a) | 4a | 86 | 92∶8 | 97 |
2 | 2-ClC6H4 (2b) | 97 | C6H5CO (3a) | 4b | 65 | 82∶18 | 93 |
3 | 3-ClC6H4 (2c) | 95 | C6H5CO (3a) | 4c | 90 | 80∶20 | 93 |
4 | 4-ClC6H4 (2d) | 99 | C6H5CO (3a) | 4d | 94 | 87∶13 | 93 |
5 | 4-BrC6H4 (2e) | 96 | C6H5CO (3a) | 4e | 94 | 91∶9 | 95 |
6 | 4-NCC6H4 (2f) | 98 | C6H5CO (3a) | 4f | 69 | 79∶21 | 97 |
7 | 4-O2NC6H4 (2g) | 98 | C6H5CO (3a) | 4g | 70 | 80∶20 | 98 |
8 | 4-CF3C6H4 (2h) | 98 | C6H5CO (3a) | 4h | 80 | 78∶22 | 97 |
9 | 4-CH3C6H4 (2i) | 97 | C6H5CO (3a) | 4i | 70 | 95∶5 | 97 |
10f | 4-CH3OC6H4 (2j) | — | C6H5CO (3a) | 4j | 72 | 87∶13 | — |
11f | 2-Pyridyl (2k) | — | C6H5CO (3a) | 4k | 38 | >20∶1 | — |
12 | C6H5 (2a) | 98 | 4-CH3OC6H4CO (3b) | 4l | 71 | 91∶9 | 97 |
13 | C6H5 (2a) | 98 | 4-F3CC6H4CO (3c) | 4m | 80 | 94∶6 | 98 |
14 | C6H5 (2a) | 98 | C6H5 (3d) | 4n | 45 | 83∶17 | 97 |
[1] |
(a) Diekema, D. J.; Jones, R. N. Drugs 2000, 59, 7.
doi: 10.2165/00003495-200059010-00002 |
(b) Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. Clin. Microbiol. Infect. 2014, 20, 3.
doi: 10.1111/1469-0691.12463 |
|
[2] |
(a) Wang, B. S.; Elageed, E. H. M.; Zhang, D. W.; Yang, S. J..; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278.
doi: 10.1002/cctc.v6.1 |
(b) Wang, B. S.; Luo, Z. J.; Elageed, E. H. M.; Wu, S.; Zhang, Y. Y.; Wu, X. P.; Xia, F.; Zhang, G. R.; Gao, G. H. ChemCatChem 2016, 8, 830.
doi: 10.1002/cctc.v8.4 |
|
(c) Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. M. ChemCatChem 2016, 8, 2466.
doi: 10.1002/cctc.v8.15 |
|
(d) Chen, F.; Li, M.; Wang, J. J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.
|
|
(e) Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.
doi: 10.1039/C6GC02934E |
|
(f) Zhou, M. X.; Zheng, X. Z.; Wang, Y. R.; Yuan, D.; Yao, Y. M. ChemCatChem 2019, 11, 5783.
doi: 10.1002/cctc.v11.23 |
|
[3] |
Roush, W. R.; James, R. A. Aust. J. Chem. 2002, 55, 141.
doi: 10.1071/CH01199 |
[4] |
Shibata, I.; Baba, A.; Iwasaki, H.; Matsuda, H. J. Org. Chem. 1986, 51, 2177.
doi: 10.1021/jo00362a005 |
[5] |
Baba, A.; Seki, K.; Matsuda, H. J. Heterocycl. Chem. 1990, 27, 1925.
doi: 10.1002/jhet.v27:7 |
[6] |
Fujiwara, M.; Baba, A.; Tomohisa, Y.; Matsuda, H. Chem. Lett. 1986, 15, 1963.
doi: 10.1246/cl.1986.1963 |
[7] |
Paddock, R. L.; Adhikari, D.; Lord, R. L.; Baik, M.; Nguyen, S. T. Chem. Commun. 2014, 50, 15187.
doi: 10.1039/C4CC07421A |
[8] |
Speranza, G. P.; Peppel, W. J. J. Org. Chem. 1958, 23, 1922.
doi: 10.1021/jo01106a027 |
[9] |
Qian, C. T.; Zhu, D. M. Synlett 1994, 129.
|
[10] |
Zhang, X. X.; Chen, W. Chem. Lett. 2010, 39, 527.
doi: 10.1246/cl.2010.527 |
[11] |
Yingcharoen, P.; Natongchai, W.; Poater, A.; D' Elia, V. Catal. Sci. Technol. 2020, 10, 5544.
doi: 10.1039/D0CY00987C |
[12] |
Rostami, A.; Ebrahimi, A.; Sakhaee, N.; Golmohammadi, F.; Al-Harrasi, A. J. Org. Chem. 2022, 87, 40.
doi: 10.1021/acs.joc.1c01686 |
[13] |
Xuan, Y. N.; Lin, H. S.; Yan, M. Org. Biomol. Chem. 2013, 11, 1815.
doi: 10.1039/c3ob00056g |
[14] |
Righi, G.; Rumboldt, G.; Bonini, C. Tetrahedron 1995, 51, 13401.
doi: 10.1016/0040-4020(95)00873-7 |
[15] |
For the datils of the mechanism research, see supporting information.
|
[16] |
(a) Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665.
doi: 10.1038/277665a0 |
(b) Wani, M. C.; Horwitz, S. B. Anti-Cancer Drugs 2014, 25, 482.
doi: 10.1097/CAD.0000000000000063 |
|
(c) Baloglu, E.; Kingston, D. G. I. J. Nat. Prod. 1999, 62, 1068.
doi: 10.1021/np990040k |
|
[17] |
Afońkin, A. A.; Kostrikin, L. M.; Shumeiko, A. E.; Popov, A. F.; Matveev, A. A.; Matvienko, V. N.; Zabudkin, A. F. Russ. Chem. Bull. 2012, 61, 2149.
doi: 10.1007/s11172-012-0302-4 |
[18] |
Mamedov, V. A.; Mamedova, V. L.; Syakaev, V. V.; Voronina, J. K.; Mahrous, E. M.; Korshin, D. E.; Latypov, S. K.; Sinyashin, O. G. Tetrahedron 2020, 76, 131478.
doi: 10.1016/j.tet.2020.131478 |
[19] |
Agarwal, K. C.; Knaus, E. E. J. Heterocycl. Chem. 1985, 22, 65.
doi: 10.1002/jhet.v22:1 |
[20] |
McGrew, L. A.; Sweeny, W.; Campbell, T. W.; Foldi, V. S. J. Org. Chem. 1964, 29, 3002.
doi: 10.1021/jo01033a050 |
[21] |
Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
doi: 10.1021/ja00738a045 |
[1] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[2] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[3] | 宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建. N—N单键阻转异构体的催化不对称合成[J]. 有机化学, 2023, 43(6): 1977-1990. |
[4] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[5] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[6] | 张怀远, 许诺, 唐蓉萍, 石星丽. 手性高价碘试剂诱导的不对称去芳构化反应研究进展[J]. 有机化学, 2023, 43(11): 3784-3805. |
[7] | 匡鑫, 丁昌华, 吴奕晨, 王鹏. 手性烯丙基硅烷的催化对映选择性合成[J]. 有机化学, 2023, 43(10): 3367-3387. |
[8] | 濮留洋, 李芷悦, 李利民, 马玉翠, 马民, 胡胜全, 吴正治. 秋水仙碱及其天然类似物(–)-N-乙酰秋水酚甲醚的不对称合成[J]. 有机化学, 2023, 43(1): 313-319. |
[9] | 李文娟, 张睿, 蔡志华, 韩小强, 何林, 代斌. 苯炔[3+2]环加成反应构建三氟甲基取代的苯并环状亚砜亚胺衍生物及其杀棉蚜活性研究[J]. 有机化学, 2022, 42(9): 2832-2839. |
[10] | 毛沅浩, 高延峰, 苗志伟. 过渡金属催化不对称环化反应合成七元环化合物研究进展[J]. 有机化学, 2022, 42(7): 1904-1924. |
[11] | 张同利, 晏君, 何敬立, 寇学振, 申杰峰, 刘德龙, 张万斌. Ir-BiphPHOX催化的不对称氢化反应合成手性5-芳基噁唑烷-2-酮[J]. 有机化学, 2022, 42(6): 1747-1758. |
[12] | 姚婷, 李佳燕, 王佳明, 赵常贵. 氮杂环卡宾催化构筑含七元环结构的研究进展[J]. 有机化学, 2022, 42(4): 925-944. |
[13] | 王立花, 公绪顺, 雷婷, 江世智. 黄烷酮的不对称合成研究进展[J]. 有机化学, 2022, 42(3): 758-769. |
[14] | 成秀亮, 李冬, 杨博轩, 林玉妹, 龚磊. 手性Lewis酸催化的可见光不对称合成研究进展[J]. 有机化学, 2022, 42(10): 3335-3350. |
[15] | 胡旭东, 张鑫亮, 刘文博. 手性螺环双氮配体在过渡金属催化中的应用进展[J]. 有机化学, 2022, 42(10): 3102-3117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||