有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1537-1544.DOI: 10.6023/cjoc202112024 上一篇 下一篇
所属专题: 有机氟化学虚拟合辑
研究论文
收稿日期:
2021-12-19
修回日期:
2022-01-04
发布日期:
2022-01-20
通讯作者:
曾小宝
基金资助:
Qingyun Gu, Zhenfeng Cheng, Xiaobao Zeng()
Received:
2021-12-19
Revised:
2022-01-04
Published:
2022-01-20
Contact:
Xiaobao Zeng
Supported by:
文章分享
报道了一种无过渡金属催化剂、外加化学氧化剂的条件下, 电化学氧化三氟甲基亚磺酸钠与α-羰基二硫缩烯酮的高效三氟甲基化反应. 该方法具有反应条件温和与较好的官能团兼容性的优点. 相关的机理实验表明该反应是通过自由基机理进行的.
顾清云, 程振凤, 曾小宝. 电化学氧化三氟甲基亚磺酸钠与α-羰基二硫缩烯酮的三氟甲基化反应[J]. 有机化学, 2022, 42(5): 1537-1544.
Qingyun Gu, Zhenfeng Cheng, Xiaobao Zeng. Electrochemical Oxidative Trifluoromethylation of α-Oxoketene Ketene Dithioacetals with CF3SO2Na[J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1537-1544.
Entry | Variation from the standard conditions | Yieldb/% |
---|---|---|
1 | None | 77 |
2 | C felt (+) | C felt(–) Instead of C felt (+) | Fe (–) | Trace |
3 | C felt (+) | Ni felt(–) Instead of C felt (+) | Fe (–) | 62 |
4 | n-Bu4NPF6 instead of n-Bu4NClO4 | 74 |
5 | n-Bu4NBF4 instead of n-Bu4NClO4 | 71 |
6 | Without electrolyte | 61 |
7 | DCE instead of MeCN | Trace |
8 | DMF instead of MeCN | Trace |
9 | AcOH instead of MeCN | 52 |
10 | Without H2O | 60 |
11 | H2O (20 equiv.) | 75 |
12 | 50 ℃ instead of r.t. | 45 |
13 | 2a (2 equiv.) | 35 |
14 | 5 mA instead of 10 mA | 57 |
15 | TMSCF3 instead of CF3SO2Na | Trace |
16 | No electric current | N.R. |
17 | n-Bu4NClO4 (2 equiv.) | 73 |
Entry | Variation from the standard conditions | Yieldb/% |
---|---|---|
1 | None | 77 |
2 | C felt (+) | C felt(–) Instead of C felt (+) | Fe (–) | Trace |
3 | C felt (+) | Ni felt(–) Instead of C felt (+) | Fe (–) | 62 |
4 | n-Bu4NPF6 instead of n-Bu4NClO4 | 74 |
5 | n-Bu4NBF4 instead of n-Bu4NClO4 | 71 |
6 | Without electrolyte | 61 |
7 | DCE instead of MeCN | Trace |
8 | DMF instead of MeCN | Trace |
9 | AcOH instead of MeCN | 52 |
10 | Without H2O | 60 |
11 | H2O (20 equiv.) | 75 |
12 | 50 ℃ instead of r.t. | 45 |
13 | 2a (2 equiv.) | 35 |
14 | 5 mA instead of 10 mA | 57 |
15 | TMSCF3 instead of CF3SO2Na | Trace |
16 | No electric current | N.R. |
17 | n-Bu4NClO4 (2 equiv.) | 73 |
[1] |
For selected reviews, see: (a) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532.
doi: 10.1021/acs.chemrev.8b00077 |
(b) Rej, S.; Chatani, N. Angew. Chem., Int. Ed. 2019, 58, 8304.
doi: 10.1002/anie.201808159 |
|
(c) Wang, K.; Hu, F.; Zhang, Y.; Wang, J. Sci. China Chem. 2015, 58, 1252.
doi: 10.1007/s11426-015-5362-5 |
|
(d) Chen, X.; Xiao, F.; He, W.-M. Org. Chem. Front. 2021, 8, 5206.
doi: 10.1039/D1QO00375E |
|
(e) Fu, X.; Zhao, W. Chin. J. Org. Chem. 2019, 39, 625. (in Chinese)
doi: 10.6023/cjoc201808031 |
|
(付晓飞, 赵文献, 有机化学, 2019, 39, 625.)
doi: 10.6023/cjoc201808031 |
|
(f) Xu, L.; Wang, F.; Chen, F.; Zhu, S.; Chu, L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese)
doi: 10.6023/cjoc202109002 |
|
(徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.)
doi: 10.6023/cjoc202109002 |
|
[2] |
For selected examples, see: (a) Yang, Y.-F.; Lin, J.-H.; Xiao, J.-C. Org. Lett. 2021, 23, 9277.
doi: 10.1021/acs.orglett.1c03630 |
(b) Huang, W.; Xu, C.; Yu, J.; Wang, M. J. Org. Chem. 2021, 86, 1987.
doi: 10.1021/acs.joc.0c02637 |
|
(c) Lu, Z.; Hennis, O.; Gentry, J.; Xu, B.; Hammond, G. B. Org. Lett. 2020, 22, 4383.
doi: 10.1021/acs.orglett.0c01395 |
|
(d) Li, Q.; Fan, L.; Peng, D.; Meng, B.; Wang, S.; Huang, R.; Liu, S.; Li, S. ACS Catal. 2020, 10, 4012.
doi: 10.1021/acscatal.0c00498 |
|
(e) Lai, M.; Wu, Z.; Li, S.-J.; Wei, D.; Zhao, M. J. Org. Chem. 2019, 84, 11135.
doi: 10.1021/acs.joc.9b01829 |
|
(f) Liang, Y.-Y.; Huang, J.; Ouyang, X.-H.; Qin, J.-H.; Song, R.-J.; Li, J.-H. Chem. Commun. 2021, 57, 3684.
doi: 10.1039/D1CC00400J |
|
[3] |
(a) Pan, L.; Bi, X.; Liu, Q. Chem. Soc. Rev. 2013, 42, 1251.
doi: 10.1039/C2CS35329F |
(b) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
doi: 10.1039/C2CS35323G |
|
(c) Xu, C.; Wang, M.; Liu, Q. Adv. Synth. Catal. 2019, 361, 1208.
doi: 10.1002/adsc.201801070 |
|
(d) Chen, J.; Yin, C.; Zhou, J.; Yu, C. Adv. Synth. Catal. 2021, 363, 4360.
doi: 10.1002/adsc.202100682 |
|
(e) Zhou, Y.; Lou, Y.; Wang, Y.; Song, Q. Org. Chem. Front. 2019, 6, 3355.
doi: 10.1039/c9qo00847k |
|
(f) Lou, J.; Han, W.; Liu, Z.; Xiao, J. Org. Chem. Front. 2021, 8, 1447.
doi: 10.1039/D1QO00056J |
|
(g) Huang, L.; Wu, J.; Hu, J.; Bi, Y.; Huang, D. Tetrahedron Lett. 2020, 61, 151363.
doi: 10.1016/j.tetlet.2019.151363 |
|
(h) Wen, J.; Zhang, L.; Yang, X.; Niu, C.; Wang, S.; Wei, W.; Sun, X.; Yang, J.; Wang, H. Green Chem. 2019, 21, 3597.
doi: 10.1039/C9GC01351B |
|
(i) Zhang, H.; Bao, H.; Xu, Z.; Liu, Y. Chin. J. Org. Chem. 2017, 37, 2153. (in Chinese)
doi: 10.6023/cjoc201701048 |
|
(张海峰, 鲍汉扬, 徐峥, 刘运奎, 有机化学, 2017, 37, 2153.)
doi: 10.6023/cjoc201701048 |
|
[4] |
For selected reviews, see: (a) Jeschke, P.; ChemBioChem 2004, 5, 570.
doi: 10.1002/cbic.200300833 |
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
doi: 10.1126/science.1131943 |
|
(c) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
doi: 10.1021/cr030143e |
|
(d) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
doi: 10.1038/nature10108 |
|
(e) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
doi: 10.1021/jm1013693 |
|
(f) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815. (in Chinese)
doi: 10.6023/cjoc1202021 |
|
(卿凤翎, 有机化学, 2012, 32, 815.)
doi: 10.6023/cjoc1202021 |
|
(g) Qiu, Y.; Wei, F.; Ye, L.; Zhao, M. Chin. J. Org. Chem. 2021, 41, 1821. (in Chinese)
|
|
(邱云亮, 魏凤姣, 叶鎏, 赵旻玥, 有机化学, 2021, 41, 1821.)
doi: 10.6023/cjoc202009036 |
|
(h) Chen, D.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2571. (in Chinese)
doi: 10.6023/cjoc201803045 |
|
(陈董涵, 杨文, 姚永祺, 杨新, 邓颖颍, 杨定乔, 有机化学, 2018, 38, 2571.)
doi: 10.6023/cjoc201803045 |
|
[5] |
(a) Egami, H.; Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294.
doi: 10.1002/anie.201309260 pmid: 25335765 |
(b) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
doi: 10.1021/ar4003202 pmid: 25335765 |
|
(c) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
doi: 10.1039/C4CS00025K pmid: 25335765 |
|
(d) Barata-Vallejo, S.; Lantaño, B.; Postigo, A. Chem.-Eur. J. 2014, 20, 16806.
doi: 10.1002/chem.201404005 pmid: 25335765 |
|
(e) Alonso, C.; De Marigorta, E. M.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
doi: 10.1021/cr500368h pmid: 25335765 |
|
[6] |
Xu, C.; Liu, J.; Ming, W.; Liu, Y.; Liu, J.; Wang, M.; Liu, Q. Chem.- Eur. J. 2013, 19, 9104.
doi: 10.1002/chem.201301585 |
[7] |
Mao, Z.; Huang, F.; Yu, H.; Chen, J.; Yu, Z.; Xu, Z. Chem.-Eur. J. 2014, 20, 3439.
doi: 10.1002/chem.201305069 |
[8] |
Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66. (in Chinese)
doi: 10.6023/A16070341 |
(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
doi: 10.6023/A16070341 |
|
[9] |
For reviews on electrosynthesis, see: (a) Jutand, A. Chem. Rev. 2008, 108, 2300.
doi: 10.1021/cr068072h pmid: 18605756 |
(b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 pmid: 18605756 |
|
(c) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 pmid: 18605756 |
|
(d) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 pmid: 18605756 |
|
(e) Martins, G. M.; Zimmer, G. C.; Menders, S. R.; Ahmed, N. Green Chem. 2020, 22, 4849.
doi: 10.1039/D0GC01324B pmid: 18605756 |
|
(f) Ackermann, L. Acc. Chem. Res. 2020, 53, 84.
doi: 10.1021/acs.accounts.9b00510 pmid: 18605756 |
|
(g) Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Cent. Sci. 2021, 7, 415.
doi: 10.1021/acscentsci.0c01532 pmid: 18605756 |
|
(h) Li, J.; Zhang, S.; Xu, K. Chin. Chem. Lett. 2021, 32, 2729.
doi: 10.1016/j.cclet.2021.03.027 pmid: 18605756 |
|
(i) Lian, F.; Xu, K.; Zeng, C. Chem. Rec. 2021, 21, 2290.
doi: 10.1002/tcr.202100036 pmid: 18605756 |
|
(j) Meng, Z.; Feng, C.; Xu, K. Chin. J. Org. Chem. 2021, 41, 2535. (in Chinese)
doi: 10.6023/cjoc202012013 pmid: 18605756 |
|
(蒙泽银, 冯承涛, 徐坤, 有机化学, 2021, 41, 2535.)
doi: 10.6023/cjoc202012013 pmid: 18605756 |
|
(k) Lian, F.; Xu, K. Chin. J. Org. Chem. 2020, 40, 3490. (in Chinese)
doi: 10.6023/cjoc202000072 pmid: 18605756 |
|
(廉菲, 徐坤, 有机化学, 2020, 40, 3490.)
doi: 10.6023/cjoc202000072 pmid: 18605756 |
|
[10] |
(a) Kisukuri, C. M.; Fernandes, V. A.; Delgado, J. A. C.; Häring, A. P.; Paixão, M. W.; Waldvogel, S. R. Chem. Rec. 2021, 21, 2502.
doi: 10.1002/tcr.202100065 |
(b) Zou, Z.; Zhang, W.; Wang, Y.; Pan, Y. Org. Chem. Front. 2021, 8, 2786.
doi: 10.1039/D1QO00054C |
|
(c) Bhaskaran, R. P.; Babu, B. P. Adv. Synth. Catal. 2020, 362, 5219.
doi: 10.1002/adsc.202000996 |
|
(d) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
|
|
[11] |
(a) Zhang, L.; Zhang, G.; Wang, P.; Li, Y.; Lei, A. Org. Lett. 2018, 20, 7396.
doi: 10.1021/acs.orglett.8b03081 |
(b) Liu, M.; Luo, Z.-X.; Li, T.; Xiong, D.-C.; Ye, X.-S. J. Org. Chem. 2021, 86, 16187.
doi: 10.1021/acs.joc.1c01318 |
|
(c) Vil’, V. A.; Merkulova, V. M.; Ilovaisky, A. I.; Paveliev, S. A.; Nikishin, G. I.; Terent'ev, A. O. Org. Lett. 2021, 23, 5107.
doi: 10.1021/acs.orglett.1c01643 |
|
(d) Lin, L.; Liang, Q.; Kong, X.; Chen, Q.; Xu, B. J. Org. Chem. 2020, 85, 15708.
doi: 10.1021/acs.joc.0c02213 |
|
(e) Claraz, A.; Courant, T.; Masson, G. Org. Lett. 2020, 22, 1580.
doi: 10.1021/acs.orglett.0c00176 |
|
(f) Hong, H.; Li, Y.; Chen, L.; Li, B.; Zhu, Z.; Chen, X.; Chen, L.; Huang, Y. J. Org. Chem. 2019, 84, 5980.
doi: 10.1021/acs.joc.9b00766 |
|
(g) Gao, Y.; Wang, R.; Song, H.; Liu, Y.; Wang, Q. Chem. Commun. 2021, 57, 8284.
doi: 10.1039/D1CC03389A |
|
(h) Yuan, X.; Cui, Y.-S.; Zhang, X.-P.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Li, G.; Qiu, J.-K.; Guo, K. Chem.-Eur. J. 2021, 27, 6522.
doi: 10.1002/chem.202005368 |
|
(i) Li, Z.; Jiao, L.; Sun, Y.; He, Z.; Wei, Z.; Liao, W.-W. Angew. Chem., Int. Ed. 2020, 59, 7266.
doi: 10.1002/anie.202001262 |
|
[12] |
Guan, Z.; Wang, H.; Huang, Y.; Wang, Y.; Wang, S.; Lei, A. Org. Lett. 2019, 21, 4619.
doi: 10.1021/acs.orglett.9b01518 |
[13] |
Zou, Z.; Zhang, W.; Wang, Y.; Kong, L.; Karotsis, G.; Wang, Y.; Pan, Y. Org. Lett. 2019, 21, 1857.
doi: 10.1021/acs.orglett.9b00444 |
[14] |
Zhang, Y.; Ma, C.; Struwe, J.; Feng, J.; Zhu, G.; Ackermann, L. Chem. Sci. 2021, 12, 10092.
doi: 10.1039/d1sc02682h pmid: 34377402 |
[15] |
Zhang, S.; Li, L.; Zhang, J.; Zhang, J.; Xue, M.; Xu, K. Chem. Sci. 2019, 10, 3181.
doi: 10.1039/C9SC00100J |
[16] |
(a) Gu, Q.; Wang, X.; Liu, X.; Wu, G.; Xie, Y.; Shao, Y.; Zhao, Y.; Zeng, X. Org. Biomol. Chem. 2021, 19, 8295;
doi: 10.1039/D1OB01485D |
(b) Zeng, X.; Wang, X.; Zhang, Y.; Zhu, L.; Zhao, Y. Org. Biomol. Chem. 2020, 18, 3734.
doi: 10.1039/D0OB00055H |
|
[17] |
Mao, Z.; Huang, F.; Yu, H.; Chen, J.; Yu, Z.; Xu, Z. Chem.-Eur. J. 2014, 20, 3439.
doi: 10.1002/chem.201305069 |
[18] |
Sharma, N.; Kumari, N.; Chundawat, T. S.; Kumar, S.; Bhagat, S. RSC Adv. 2017, 7, 10150.
doi: 10.1039/C7RA01130J |
[1] | 黄净, 杨毅华, 张占辉, 刘守信. 酰胺键的绿色高效构建方法与技术进展[J]. 有机化学, 2024, 44(2): 409-420. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[4] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[5] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[6] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[7] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[8] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[9] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[10] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[11] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[12] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[13] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[14] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[15] | 钟赟哲, 陈颖, 俞磊, 周宏伟. 电化学介导羧酸与醇的酯化反应[J]. 有机化学, 2023, 43(8): 2855-2863. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||