有机化学 ›› 2021, Vol. 41 ›› Issue (11): 4105-4137.DOI: 10.6023/cjoc202107063 上一篇 下一篇
所属专题: 热点论文虚拟合集
综述与进展
收稿日期:
2021-07-30
修回日期:
2021-09-23
发布日期:
2021-09-30
通讯作者:
王小野
基金资助:
Xing-Yu Chen, Ji-Kun Li, Xiao-Ye Wang()
Received:
2021-07-30
Revised:
2021-09-23
Published:
2021-09-30
Contact:
Xiao-Ye Wang
About author:
Supported by:
文章分享
近年来, 通过有机合成方式构建的结构精确的纳米碳材料备受关注, 展现出独特的性质和广阔的应用前景. 将具有螺旋手性的螺烯与大尺寸的分子基纳米碳结合, 产生了一类独特的手性纳米碳分子, 在手性光学、手性光电子学及自旋电子学等领域具有潜在的应用价值. 然而, 由于其特殊的螺旋结构及分子内较大的张力, 这类纳米碳分子的合成颇具挑战. 在合成螺烯类纳米碳分子的几类常用方法中, Scholl反应条件温和且十分高效, 被广泛使用. 从合成的角度出发, 详细综述了通过Scholl反应构建螺烯类纳米碳分子的研究进展, 并对该领域未来的发展提出展望.
陈星宇, 李继坤, 王小野. 通过Scholl反应合成螺烯类纳米碳分子的研究进展[J]. 有机化学, 2021, 41(11): 4105-4137.
Xing-Yu Chen, Ji-Kun Li, Xiao-Ye Wang. Recent Advances in the Syntheses of Helicene-Based Molecular Nanocarbons via the Scholl Reaction[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4105-4137.
[1] |
Said, A. A.; Xie, J.; Zhang, Q. Small 2019, 15, 1900854.
doi: 10.1002/smll.v15.27 |
[2] |
Edwards, R. S.; Coleman, K. S. Nanoscale 2013, 5, 38.
doi: 10.1039/C2NR32629A |
[3] |
Yan, Y.; Miao, J.; Yang, Z.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y. Chem. Soc. Rev. 2015, 44, 3295.
doi: 10.1039/C4CS00492B |
[4] |
Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Chem. Soc. Rev. 2013, 42, 2824.
doi: 10.1039/c2cs35335k pmid: 23124307 |
[5] |
Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Adv. Mater. 2019, 31, 1800716.
doi: 10.1002/adma.v31.9 |
[6] |
Léonard, F.; Talin, A. A. Nat. Nanotechnol. 2011, 6, 773.
doi: 10.1038/nnano.2011.196 |
[7] |
Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666.
doi: 10.1039/c1cs15078b pmid: 21796314 |
[8] |
Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Trends Biotechnol. 2011, 29, 205.
doi: 10.1016/j.tibtech.2011.01.008 |
[9] |
Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572.
doi: 10.1039/c3cs60388a |
[10] |
Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616.
doi: 10.1039/C5CS00183H |
[11] |
Fernández-García, J. M.; Evans, P. J.; Filippone, S.; Herranz, M. Á.; Martín, N. Acc. Chem. Res. 2019, 52, 1565.
doi: 10.1021/acs.accounts.9b00144 |
[12] |
Márquez, I. R.; Castro-Fernández, S.; Millán, A.; Campaña, A. G. Chem. Commun. 2018, 54, 6705.
doi: 10.1039/C8CC02325E |
[13] |
Wang, X.-Y.; Yao, X.; Müllen, K. Sci. China Chem. 2019, 62, 1099.
doi: 10.1007/s11426-019-9491-2 |
[14] |
Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463.
doi: 10.1021/cr200087r pmid: 22017405 |
[15] |
Gingras, M. Chem. Soc. Rev. 2013, 42, 968.
doi: 10.1039/c2cs35154d pmid: 23151799 |
[16] |
Gingras, M.; Félix, G.; Peresutti, R. Chem. Soc. Rev. 2013, 42, 1007.
doi: 10.1039/c2cs35111k pmid: 23151610 |
[17] |
Gingras, M. Chem. Soc. Rev. 2013, 42, 1051.
doi: 10.1039/c2cs35134j pmid: 23151680 |
[18] |
Li, C.; Yang, Y.; Miao, Q. Chem. Asian J. 2018, 13, 884.
doi: 10.1002/asia.v13.8 |
[19] |
Dhbaibi, K.; Favereau, L.; Crassous, J. Chem. Rev. 2019, 119, 8846.
doi: 10.1021/acs.chemrev.9b00033 pmid: 31294973 |
[20] |
Liu, B.; Zhang, Y.; Chen, Y.; Liu, X.; Zhang, L. Chin. J. Org. Chem. 2020, 40, 2879. (in Chinese)
doi: 10.6023/cjoc202005005 |
(刘秉康, 张艳丽, 陈瑜, 刘旭光, 张磊, 有机化学, 2020, 40, 2879.)
doi: 10.6023/cjoc202005005 |
|
[21] |
Xu, W.; Wu, L.; Fang, M.; Ma, Z.; Shan, Z.; Li, C.; Wang, H., J. Org. Chem. 2017, 82, 11192.
doi: 10.1021/acs.joc.7b01362 pmid: 28952725 |
[22] |
Liu, X.; Sun, H.; Xu, W.; Wan, S.; Shi, J.; Li, C.; Wang, H. Org. Chem. Front. 2018, 5, 1257.
doi: 10.1039/C7QO01049D |
[23] |
Wang, J.; Wang, G.; Li, C.; Dong, Y.; Ma, Z.; Wang, H. J. Org. Chem. 2021, 86, 4413.
doi: 10.1021/acs.joc.0c02629 |
[24] |
Wang, X.-Y.; Wang, X. C.; Narita, A.; Wagner, M.; Cao, X. Y.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 12783.
doi: 10.1021/jacs.6b08664 |
[25] |
Wang, X.-Y.; Narita, A.; Zhang, W.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 9021.
doi: 10.1021/jacs.6b04092 |
[26] |
Schuster, N. J.; Hernández Sánchez, R.; Bukharina, D.; Kotov, N. A.; Berova, N.; Ng, F.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2018, 140, 6235.
doi: 10.1021/jacs.8b03535 |
[27] |
Ma, Z.; Winands, T.; Liang, N.; Meng, D.; Jiang, W.; Doltsinis, N. L.; Wang, Z. Sci. China Chem. 2019, 63, 208.
doi: 10.1007/s11426-019-9632-2 |
[28] |
Liu, B.; Böckmann, M.; Jiang, W.; Doltsinis, N. L.; Wang, Z. J. Am. Chem. Soc. 2020, 142, 7092.
doi: 10.1021/jacs.0c00954 pmid: 32197045 |
[29] |
Liu, G.; Koch, T.; Li, Y.; Doltsinis, N. L.; Wang, Z. Angew. Chem., nt. Ed. 2019, 58, 178.
|
[30] |
Hosokawa, T.; Takahashi, Y.; Matsushima, T.; Watanabe, S.; Kikkawa, S.; Azumaya, I.; Tsurusaki, A.; Kamikawa, K. J. Am. Chem. Soc. 2017, 139, 18512.
doi: 10.1021/jacs.7b07113 pmid: 28875702 |
[31] |
Yubuta, A.; Hosokawa, T.; Gon, M.; Tanaka, K.; Chujo, Y.; Tsurusaki, A.; Kamikawa, K. J. Am. Chem. Soc. 2020, 142, 10025.
doi: 10.1021/jacs.0c01723 pmid: 32390427 |
[32] |
Zhang, F.; Michail, E.; Saal, F.; Krause, A. M.; Ravat, P. Chem.- Eur. J. 2019, 25, 16241.
|
[33] |
Roy, M.; Berezhnaia, V.; Villa, M.; Vanthuyne, N.; Giorgi, M.; Naubron, J. V.; Poyer, S.; Monnier, V.; Charles, L.; Carissan, Y.; Hagebaum-Reignier, D.; Rodriguez, J.; Gingras, M.; Coquerel, Y. Angew. Chem., nt. Ed. 2020, 59, 3264.
|
[34] |
Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem., nt. Ed. 2013, 52, 9900.
|
[35] |
Grzybowski, M.; Sadowski, B.; Butenschön, H.; Gryko, D. T. Angew. Chem., nt. Ed. 2020, 59, 2998.
|
[36] |
Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718.
doi: 10.1021/cr068010r |
[37] |
Rempala, P.; Kroulík, J.; King, B. T. J. Org. Chem. 2006, 71, 5067.
pmid: 16808493 |
[38] |
Zhai, L.; Shukla, R.; Wadumethrige, S. H.; Rathore, R. J. Org. Chem. 2010, 75, 4748.
doi: 10.1021/jo100611k |
[39] |
Rempala, P.; Kroulík, J.; King, B. T. J. Am. Chem. Soc. 2004, 126, 15002.
pmid: 15547977 |
[40] |
Liu, J.; Narita, A.; Osella, S.; Zhang, W.; Schollmeyer, D.; Beljonne, D.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 2602.
doi: 10.1021/jacs.5b10399 |
[41] |
Pradhan, A.; Dechambenoit, P.; Bock, H.; Durola, F. J. Org. Chem. 2013, 78, 2266.
doi: 10.1021/jo3027752 |
[42] |
Fang, L.; Lin, W.; Shen, Y.; Chen, C.-F. Chin. J. Org. Chem. 2018, 38, 541. (in Chinese)
doi: 10.6023/cjoc201710028 |
(房蕾, 林伟彬, 沈赟, 陈传峰, 有机化学, 2018, 38, 541.)
doi: 10.6023/cjoc201710028 |
|
[43] |
Evans, P. J.; Ouyang, J.; Favereau, L.; Crassous, J.; Fernández, I.; Perles, J.; Martín, N. Angew. Chem.. Int. Ed. 2018, 57, 6774.
doi: 10.1002/anie.v57.23 |
[44] |
Martin, M. M.; Hampel, F.; Jux, N. Chem.-Eur. J. 2020, 26, 10210.
doi: 10.1002/chem.202001471 pmid: 32338388 |
[45] |
Xu, Q.; Wang, C.; He, J.; Li, X.; Wang, Y.; Chen, X.; Sun, D.; Jiang, H. Org. Chem. Front. 2021, 8, 2970.
doi: 10.1039/D1QO00366F |
[46] |
Chen, Y.; Lin, C.; Luo, Z.; Yin, Z.; Shi, H.; Zhu, Y.; Wang, J. Angew. Chem., nt. Ed. 2021, 60, 7796.
|
[47] |
Tanaka, H.; Inoue, Y.; Mori, T. ChemPhotoChem 2018, 2, 386.
doi: 10.1002/cptc.v2.5 |
[48] |
Mori, T. Chem. Rev. 2021, 121, 2373.
doi: 10.1021/acs.chemrev.0c01017 |
[49] |
Zhao, W.-L.; Li, M.; Lu, H.-Y.; Chen, C.-F. Chem. Commun. 2019, 55, 13793.
doi: 10.1039/C9CC06861A |
[50] |
Qiu, Z.; Ju, C. W.; Frédéric, L.; Hu, Y.; Schollmeyer, D.; Pieters, G.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2021, 143, 4661.
doi: 10.1021/jacs.0c13197 |
[51] |
Cruz, C. M.; Márquez, I. R.; Mariz, I. F. A.; Blanco, V.; Sánchez- Sánchez, C.; Sobrado, J. M.; Martín-Gago, J. A.; Cuerva, J. M.; Maçôas, E.; Campaña, A. G. Chem. Sci. 2018, 9, 3917.
doi: 10.1039/C8SC00427G |
[52] |
Cruz, C. M.; Castro-Fernández, S.; Maçôas, E.; Cuerva, J. M.; Campaña, A. G. Angew. Chem., nt. Ed. 2018, 57, 14782.
|
[53] |
Medel, M. A.; Tapia, R.; Blanco, V.; Miguel, D.; Morcillo, S. P.; Campaña, A. G. Angew. Chem., nt. Ed. 2021, 60, 6094.
|
[54] |
Medel, M. A.; Cruz, C. M.; Miguel, D.; Blanco, V.; Morcillo, S. P.; Campaña, A. G. Angew. Chem., nt. Ed. 2021, 60, 22051.
|
[55] |
Reger, D.; Haines, P.; Heinemann, F. W.; Guldi, D. M.; Jux, N. Angew. Chem., nt. Ed. 2018, 57, 5938.
|
[56] |
Reger, D.; Haines, P.; Amsharov, K. Y.; Schmidt, J. A.; Ullrich, T.; Bönisch, S.; Hampel, F.; Görling, A.; Nelson, J.; Jelfs, K. E.; Guldi, D. M.; Jux, N. Angew. Chem., nt. Ed. 2021, 60, 18073.
|
[57] |
Dusold, C.; Sharapa, D. I.; Hampel, F.; Hirsch, A. Chem.-Eur. J. 2021, 27, 2332.
doi: 10.1002/chem.v27.7 |
[58] |
Luo, J.; Xu, X.; Mao, R.; Miao, Q. J. Am. Chem. Soc. 2012, 134, 13796.
doi: 10.1021/ja3054354 |
[59] |
Li, C.; Wu, H.; Zhang, T.; Liang, Y.; Zheng, B.; Xia, J.; Xu, J.; Miao, Q. Chem 2018, 4, 1416.
doi: 10.1016/j.chempr.2018.03.007 |
[60] |
Shan, L.; Liu, D.; Li, H.; Xu, X.; Shan, B.; Xu, J. B.; Miao, Q. Adv. Mater. 2015, 27, 3418.
doi: 10.1002/adma.v27.22 |
[61] |
Li, C.; Wang, Y.; Zhang, T.; Zheng, B.; Xu, J.; Miao, Q. Chem. Asian J. 2019, 14, 1676.
doi: 10.1002/asia.v14.10 |
[62] |
Arslan, H.; Uribe-Romo, F. J.; Smith, B. J.; Dichtel, W. R. Chem. Sci. 2013, 4, 3973.
doi: 10.1039/c3sc51212f |
[63] |
Niu, W.; Fu, Y.; Komber, H.; Ma, J.; Feng, X.; Mai, Y.; Liu, J. Org. Lett. 2021, 23, 2069.
doi: 10.1021/acs.orglett.1c00232 |
[64] |
Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763.
doi: 10.1021/jacs.5b03118 pmid: 26028308 |
[65] |
Fujikawa, T.; Mitoma, N.; Wakamiya, A.; Saeki, A.; Segawa, Y.; Itami, K. Org. Biomol. Chem. 2017, 15, 4697.
doi: 10.1039/c7ob00987a pmid: 28516991 |
[66] |
Fujikawa, T.; Segawa, Y.; Itami, K. J. Org. Chem. 2017, 82, 7745.
doi: 10.1021/acs.joc.7b01540 pmid: 28686025 |
[67] |
Hossain, M. M.; Thakur, K.; Talipov, M. R.; Lindeman, S. V.; Mirzaei, S.; Rathore, R. Org. Lett. 2021, 23, 5170.
doi: 10.1021/acs.orglett.1c01706 |
[68] |
Sun, Z.; Yi, C.; Liang, Q.; Bingi, C.; Zhu, W.; Qiang, P.; Wu, D.; Zhang, F. Org. Lett. 2020, 22, 209.
doi: 10.1021/acs.orglett.9b04167 |
[69] |
Urieta-Mora, J.; Krug, M.; Alex, W.; Perles, J.; Fernández, I.; Molina-Ontoria, A.; Guldi, D. M.; Martín, N. J. Am. Chem. Soc. 2020, 142, 4162.
doi: 10.1021/jacs.9b10203 pmid: 31859500 |
[70] |
Tanaka, H.; Ikenosako, M.; Kato, Y.; Fujiki, M.; Inoue, Y.; Mori, T. Commun. Chem. 2018, 1, 38.
doi: 10.1038/s42004-018-0035-x |
[71] |
Hu, Y.; Wang, X.-Y.; Peng, P.-X.; Wang, X.-C.; Cao, X.-Y.; Feng, X.; Müllen, K.; Narita, A. Angew. Chem., nt. Ed. 2017, 56, 3374.
|
[72] |
Hu, Y.; Paternò, G. M.; Wang, X.-Y.; Wang, X.-C.; Guizzardi, M.; Chen, Q.; Schollmeyer, D.; Cao, X.-Y.; Cerullo, G.; Scotognella, F.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2019, 141, 12797.
doi: 10.1021/jacs.9b05610 |
[73] |
Chang, H.; Liu, H.; Dmitrieva, E.; Chen, Q.; Ma, J.; He, P.; Liu, P.; Popov, A. A.; Cao, X.-Y.; Wang, X.-Y.; Zou, Y.; Narita, A.; Müllen, K.; Peng, H.; Hu, Y. Chem. Commun. 2020, 56, 15181.
doi: 10.1039/D0CC06970A |
[74] |
Hong, J.; Xiao, X.; Liu, H.; Fu, L.; Wang, X.-C.; Zhou, L.; Wang, X.-Y.; Qiu, Z.; Cao, X.-Y.; Narita, A.; Müllen, K.; Hu, Y. Chem. Commun. 2021, 57, 5566.
doi: 10.1039/D1CC01631H |
[75] |
Xu, Q.; Wang, C.; Zhao, Y.; Zheng, D.; Shao, C.; Guo, W.; Deng, X.; Wang, Y.; Chen, X.; Zhu, J.; Jiang, H. Org. Lett. 2020, 22, 7397.
doi: 10.1021/acs.orglett.0c02754 |
[76] |
Xu, Q.; Wang, C.; Zheng, D.; He, J.; Wang, Y.; Chen, X.; Jiang, H. J. Org. Chem. 2021, 86, 13990.
doi: 10.1021/acs.joc.0c03065 |
[77] |
Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2016, 138, 3587.
doi: 10.1021/jacs.6b01303 pmid: 26918641 |
[78] |
Zhou, F.; Huang, Z.; Huang, Z.; Cheng, R.; Yang, Y.; You, J. Org Lett. 2021, 23, 4559.
doi: 10.1021/acs.orglett.1c01212 |
[79] |
Xu, Q.; Wang, C.; Zheng, D.; Wang, Y.; Chen, X.; Sun, D.; Jiang, H. Sci. China Chem. 2021, 64, 590.
doi: 10.1007/s11426-020-9913-5 |
[80] |
Zhu, Y.; Xia, Z.; Cai, Z.; Yuan, Z.; Jiang, N.; Li, T.; Wang, Y.; Guo, X.; Li, Z.; Ma, S.; Zhong, D.; Li, Y.; Wang, J. J. Am. Chem. Soc. 2018, 140, 4222.
doi: 10.1021/jacs.8b01447 |
[81] |
Rulíšek, L.; Exner, O.; Cwiklik, L.; Jungwirth, P.; Starý, I.; Pospíšil, L.; Havlas, Z. J. Phys. Chem. C 2007, 111, 14948.
doi: 10.1021/jp075129a |
[82] |
Wang, Y.; Yin, Z.; Zhu, Y.; Gu, J.; Li, Y.; Wang, J. Angew. Chem., nt. Ed. 2019, 58, 587.
|
[83] |
Zhu, Y.; Guo, X.; Li, Y.; Wang, J. J. Am. Chem. Soc. 2019, 141, 5511.
doi: 10.1021/jacs.9b01266 |
[84] |
Cruz, C. M.; Márquez, I. R.; Castro-Fernández, S.; Cuerva, J. M.; Maçòas, E.; Campaña, A. G. Angew. Chem., nt. Ed. 2019, 58, 8068.
|
[85] |
Ma, S.; Gu, J.; Lin, C.; Luo, Z.; Zhu, Y.; Wang, J. J. Am. Chem. Soc. 2020, 142, 16887.
doi: 10.1021/jacs.0c08555 |
[86] |
Castro-Fernández, S.; Cruz, C. M.; Mariz, I. F. A.; Márquez, I. R.; Jiménez, V. G.; Palomino-Ruiz, L.; Cuerva, J. M.; Maçòas, E.; Campaña, A. G. Angew. Chem., nt. Ed. 2020, 59, 7139.
|
[87] |
Yao, X.; Zheng, W.; Osella, S.; Qiu, Z.; Fu, S.; Schollmeyer, D.; Müller, B.; Beljonne, D.; Bonn, M.; Wang, H. I.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2021, 143, 5654.
doi: 10.1021/jacs.1c01882 |
[88] |
Ma, J.; Fu, Y.; Dmitrieva, E.; Liu, F.; Komber, H.; Hennersdorf, F.; Popov, A. A.; Weigand, J. J.; Liu, J.; Feng, X. Angew. Chem., nt. Ed. 2020, 59, 5637.
|
[89] |
Han, Y.; Xue, Z.; Li, G.; Gu, Y.; Ni, Y.; Dong, S.; Chi, C. Angew. Chem., nt. Ed. 2020, 59, 9026.
|
[90] |
Qiu, Z.; Asako, S.; Hu, Y.; Ju, C. W.; Liu, T.; Rondin, L.; Schollmeyer, D.; Lauret, J. S.; Müllen, K.; Narita, A. J. Am. Chem. Soc. 2020, 142, 14814.
doi: 10.1021/jacs.0c05504 |
[91] |
Shen, C.; Zhang, G.; Ding, Y.; Yang, N.; Gan, F.; Crassous, J.; Qiu, H. Nat. Commun. 2021, 12, 2786.
doi: 10.1038/s41467-021-22992-6 |
[1] | 刘秉康, 张艳丽, 陈瑜, 刘旭光, 张磊. 硼氮[4]螺烯的合成、表征及光物理性质研究[J]. 有机化学, 2020, 40(9): 2879-2887. |
[2] | 王婧琳, 沈程硕, 唐颂超, 姚远. 两亲聚肽/螺烯的电荷复合自组装行为研究[J]. 有机化学, 2019, 39(10): 2973-2979. |
[3] | 房蕾, 林伟彬, 沈赟, 陈传峰. 螺烯及其衍生物在不对称催化中的应用[J]. 有机化学, 2018, 38(3): 541-554. |
[4] | 窦国兰, 史达清. 螺烯类化合物的合成研究进展[J]. 有机化学, 2011, 31(12): 1989-1996. |
[5] | 高 剑; 黄祎先 ; 伍贻康*. Brefeldin A全合成研究新进展[J]. 有机化学, 2009, 29(02): 206-215. |
[6] | 杨永青,伍贻康. 抗霉素合成概览[J]. 有机化学, 2006, 26(10): 1370-1377. |
[7] | 刘天麟,谢建华,杨卓鸿. α-三唑基查尔酮与苯肼的加成-关环反应研究[J]. 有机化学, 2000, 20(6): 900-904. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||