有机化学 ›› 2022, Vol. 42 ›› Issue (3): 758-769.DOI: 10.6023/cjoc202109030 上一篇 下一篇
综述与进展
王立花a,b, 公绪顺a,b, 雷婷a,b, 江世智a,b,*()
收稿日期:
2021-09-21
修回日期:
2021-10-22
发布日期:
2021-11-17
通讯作者:
江世智
作者简介:
基金资助:
Lihua Wanga,b, Xushun Gonga,b, Ting Leia,b, Shizhi Jianga,b()
Received:
2021-09-21
Revised:
2021-10-22
Published:
2021-11-17
Contact:
Shizhi Jiang
About author:
Supported by:
文章分享
黄烷酮及其衍生物是一种重要的生物活性的天然产物, 在很多复杂的天然产物中存在该骨架结构, 具有广泛的生物活性, 对于黄烷酮的研究越来越得到重视. 手性黄烷酮其本身在植物当中是种重要的化学物质, 具有潜在的药用价值, 但其含量较少, 很多化学家致力于通过合成的方法来解决问题, 推动了对映体富集的黄烷酮类的制备, 但其制备过程存在一定的局限性, 对于一些复杂结构的黄烷酮类化合物仍很难实现, 这将是未来需要攻克的难题. 本文综述了近年来黄烷酮的不对称合成方法. 合成方法包括对羰基的还原、手性拆分、碳-碳键的形成、碳-杂键的形成及其他类型的合成方法.
王立花, 公绪顺, 雷婷, 江世智. 黄烷酮的不对称合成研究进展[J]. 有机化学, 2022, 42(3): 758-769.
Lihua Wang, Xushun Gong, Ting Lei, Shizhi Jiang. Research Progress on Asymmetric Synthesis of Flavanones[J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 758-769.
[1] |
Veitch, N. C.; Grayer, R. J. Nat. Prod. Rep. 2011, 28, 1626.
doi: 10.1039/c1np00044f |
[2] |
Amado, N. G.; Fonseca, B. F.; Cerqueira, D. M.; Neto, V. M.; Abreu, J. G. Life Sci. 2011, 89(15-16), 545.
doi: 10.1016/j.lfs.2011.04.023 |
[3] |
Crozier, A.; Jaganath, I. B.; Clifford, M. N. Nat. Prod. Rep. 2009, 26(8), 1001.
doi: 10.1039/b802662a pmid: 19636448 |
[4] |
Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G. Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939.
doi: 10.1021/ja002033k |
[5] |
Marais, J. P. J.; Ferreira, D.; Slade, D. Phytochem. Lett. 2005, 66(18), 2145.
|
[6] |
Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35(3), 226.
doi: 10.1039/B513396C |
[7] |
Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Chem. Rev. 2011, 112(4), 2557.
doi: 10.1021/cr200328h |
[8] |
Zhao, D. B.; Beiring, B.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52(32), 8454.
doi: 10.1002/anie.v52.32 |
[9] |
Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5(7), 1143.
pmid: 12659594 |
[10] |
Corey, E. J.; Mitra, R. B. J. Am. Chem. Soc. 1962, 84(15), 2938.
doi: 10.1021/ja00874a019 |
[11] |
Rákosi, M.; Tökés, A. L.; Bognár, R. Tetrahedron Lett. 1970, 11(26), 2305.
doi: 10.1016/S0040-4039(01)98215-2 |
[12] |
Pellissier, H. Adv. Synth. Catal. 2011, 353(10), 1613.
doi: 10.1002/adsc.201100111 |
[13] |
Lemke, M. K.; Schwab, P.; Fischer, P.; Tischer, S.; Witt, M.; Noehringer, L.; Rogachev, V.; Jäger, A.; Kataeva, O.; Fröhlich, R.; Metz, P. Angew. Chem., Int. Ed. 2013, 52(44), 11651.
doi: 10.1002/anie.201306500 |
[14] |
Patel, R.; Hanson, R.; Goswami, A. J. Ind. Microbiol. Biotechnol. 2003, 30, 252.
doi: 10.1007/s10295-003-0032-6 |
[15] |
Lzumi, T.; Hino, T.; Kasahara, A. J. Chem. Soc., erkin Trans. 1 1992, (10), 1265.
|
[16] |
Lzumi, T.; Suenaga, K. J. Heterocycl. Chem. 1997, 34, 1535.
doi: 10.1002/jhet.v34:5 |
[17] |
Kasashi, K.; Kakuda, H.; Goto, M.; Kawabata, S.; Kometani, T. Tetrahedron: Asymmetry. 2003, 14(11), 1529.
doi: 10.1016/S0957-4166(03)00277-5 |
[18] |
Richard, G.; Button.; Peter, J.; Taylo J. Chem. Soc., erkin Trans. 2 1992, 1571.
|
[19] |
Nibbs, A. E.; Scheidt, K. A. Eur. J. Inorg. 2012, 3, 449.
|
[20] |
Solladié, G.; Gehrold, N.; Maignan, J. Tetrahedron: Asymmetry 1999, 10(14), 2739.
doi: 10.1016/S0957-4166(99)00266-9 |
[21] |
Chen, J.; Chen, J.; Lang, F.; Zhang, X. Y.; Cun, L. F.; Zhu, J.; Deng, J. G.; Liao, J. J. Am. Chem. Soc. 2010, 41(33), 4552.
|
[22] |
Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc. 2009, 131(38), 13588.
doi: 10.1021/ja905432x pmid: 19728707 |
[23] |
Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120(22), 5579.
doi: 10.1021/ja980666h |
[24] |
Shintani, R.; Takeda, M.; Nishimura, T.; Hayashi, T. Angew. Chem., Int. Ed. 2010, 49(23), 3969.
doi: 10.1002/anie.201000467 |
[25] |
Han, F. Z.; Chen, G. H.; Zhang, X. Y.; Liao, J. Eur. J. Org. Chem. 2011, 16, 2928.
|
[26] |
Korenaga, T.; Hayashi, K.; Akaki, Y.; Maenishi, R.; Sakai, T. Org. Lett. 2011, 13(8), 2022.
doi: 10.1021/ol2004148 |
[27] |
Cisak, A.; Mielczarek, C. J. Chem. Soc., erkin Trans 2. 1992, 1603.
|
[28] |
Mino, T.; Hashimoto, M.; Uehara, K.; Naruse, Y.; Kobayashi, S.; Sakamoto, M.; Fujita, T. Tetrahedron Lett. 2012, 53(34), 4562.
doi: 10.1016/j.tetlet.2012.06.064 |
[29] |
He, Q. J.; So, C. M.; Bian, Z. X.; Hayashi, T.; Wang, J. Chem. Asian J. 2015, 10(3), 540.
doi: 10.1002/asia.201403290 |
[30] |
Holder, J. C.; Marziale, A. N.; Gatti, M.; Mao, B.; Stoltz, B. M. Chemistry 2013, 19(1), 74.
|
[31] |
Tamura, M.; Ogata, H.; Ishida, Y.; Takahashi, Y. Tetrahedron Lett. 2017, 58(40), 3808.
doi: 10.1016/j.tetlet.2017.08.041 |
[32] |
Meng, L.; Wang, J. ChemInform 2016, 47(5), 656.
|
[33] |
Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129(13), 3830.
doi: 10.1021/ja070394v |
[34] |
Farmer, R. L.; Biddle, M. M.; Nibbs, A. E.; Huang, X.; Bergan, R. C.; Scheidt, K. A. ACS Med. Chem. Lett. 2010, 1(8), 400.
doi: 10.1021/ml100110x |
[35] |
Wang, L. J.; Liu, X. H.; Dong, Z. H.; Fu, X.; Feng, X. M. Angew. Chem., Int. Ed. 2008, 47(45), 8670.
doi: 10.1002/anie.v47:45 |
[36] |
Feng, Z.; Zeng, M.; Xu, Q. L.; You, S. L. Sci. Bull. 2010, 55(17), 1723.
doi: 10.1007/s11434-009-3735-x |
[37] |
Wang, H. F.; Xiao, H.; Wang, X. W.; Zhao, G. Tetrahedron 2011, 67(30), 5389.
doi: 10.1016/j.tet.2011.05.088 |
[38] |
Dittmer, C.; Raabe, G. Hintermann Eur. J. Inorg 2007, 5886.
|
[39] |
Miles, C. O.; Main, L.; Nicholson, B. K. Aust. J. Chem. 1989, 42, 1103.
doi: 10.1071/CH9891103 |
[40] |
Hintermann, L.; Dittmer, C. Eur. J. Inorg. 2012, 28, 5573.
|
[41] |
Zhang, Y. L.; Wang, Y. Q. Tetrahedron Lett. 2014, 55(21), 3255.
|
[42] |
Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2012, 41, 988.
doi: 10.1039/c1cs15167c pmid: 21796323 |
[43] |
Reyes, E.; Talavera, G.; Vicario, J. L.; Badía, D.; Carrillo, L. Angew. Chem., nt. Ed. 2009, 48, 5701.
|
[44] |
McDonald, B. R.; Nibbs, A. E.; Scheidt, K. A. Org. Lett. 2015, 17(1), 98.
doi: 10.1021/ol503303w |
[45] |
Sharma, A.; Singh, M.; Rai, N. N.; Sawant, D. J. Org. Chem. 2013, 9, 1235.
|
[46] |
Singh, A. K.; Mangawa, S. K.; Kumar, A.; Dixit, A. K.; Awasthi, S. K. ChemistrySelect 2017, 2(34), 11160.
doi: 10.1002/slct.201701047 |
[47] |
Hodgetts, K. J. Tetrahedron Lett. 2001, 42, 3763.
|
[48] |
Noda, Y.; Watanabe, M. Helv. Chim. Acta 2002, 85(10), 3473.
doi: 10.1002/1522-2675(200210)85:10【-逻*辑*与-】#x00026;lt;3473::AID-HLCA3473【-逻*辑*与-】#x00026;gt;3.0.CO;2-7 |
[49] |
Wang, H. F.; Cui, H. F.; Chai, Z.; Li, P.; Zheng, C. W.; Yang, Y. Q.; Zhao, G. Chemistry 2009, 15(48), 13299.
|
[50] |
Zhong, N. J; Liu, L.; Wang, D.; Chen, Y. J. Chem. Commun. (Camb.) 2013, 49(35), 3697.
doi: 10.1039/c3cc41011k |
[51] |
Wen, G. F.; Su, Y. P.; Zhang, G. X.; Lin, Q. Q.; Zhu, Y. J.; Zhang, Q. Q.; Fang, X. Q. Org. Lett. 2016, 18(16), 3980.
doi: 10.1021/acs.orglett.6b01767 |
[52] |
Reddi, Y.; Sunoj, R. B. ACS Catal. 2015, 5(3), 1596.
doi: 10.1021/cs502006x |
[1] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[2] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[3] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[4] | 宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建. N—N单键阻转异构体的催化不对称合成[J]. 有机化学, 2023, 43(6): 1977-1990. |
[5] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[6] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[7] | 张怀远, 许诺, 唐蓉萍, 石星丽. 手性高价碘试剂诱导的不对称去芳构化反应研究进展[J]. 有机化学, 2023, 43(11): 3784-3805. |
[8] | 匡鑫, 丁昌华, 吴奕晨, 王鹏. 手性烯丙基硅烷的催化对映选择性合成[J]. 有机化学, 2023, 43(10): 3367-3387. |
[9] | 濮留洋, 李芷悦, 李利民, 马玉翠, 马民, 胡胜全, 吴正治. 秋水仙碱及其天然类似物(–)-N-乙酰秋水酚甲醚的不对称合成[J]. 有机化学, 2023, 43(1): 313-319. |
[10] | 毛沅浩, 高延峰, 苗志伟. 过渡金属催化不对称环化反应合成七元环化合物研究进展[J]. 有机化学, 2022, 42(7): 1904-1924. |
[11] | 姚婷, 李佳燕, 王佳明, 赵常贵. 氮杂环卡宾催化构筑含七元环结构的研究进展[J]. 有机化学, 2022, 42(4): 925-944. |
[12] | 胡旭东, 张鑫亮, 刘文博. 手性螺环双氮配体在过渡金属催化中的应用进展[J]. 有机化学, 2022, 42(10): 3102-3117. |
[13] | 苏艺雯, 邹有全, 肖文精. 光催化去消旋化的研究进展[J]. 有机化学, 2022, 42(10): 3201-3212. |
[14] | 成秀亮, 李冬, 杨博轩, 林玉妹, 龚磊. 手性Lewis酸催化的可见光不对称合成研究进展[J]. 有机化学, 2022, 42(10): 3335-3350. |
[15] | 滕明瑜, 韩涛, 黄恩和, 叶龙武. 金属卡宾参与的对映选择性去对称化反应研究进展[J]. 有机化学, 2022, 42(10): 3295-3301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||