有机化学 ›› 2022, Vol. 42 ›› Issue (4): 1101-1110.DOI: 10.6023/cjoc202111032 上一篇 下一篇
研究论文
收稿日期:
2021-11-23
修回日期:
2021-12-08
发布日期:
2021-12-15
通讯作者:
沈振陆, 徐森苗
基金资助:
Wenqi Liua, Zhenlu Shena(), Senmiao Xub()
Received:
2021-11-23
Revised:
2021-12-08
Published:
2021-12-15
Contact:
Zhenlu Shen, Senmiao Xu
Supported by:
文章分享
报道了以吡唑作为导向基, 三苯基砷/铱催化的活化一级碳氢键的双硼化反应. 这一方法能够兼容多种官能团, 能够以中等到良好的收率实现一系列1,1-偕二硼烷类化合物的合成. 同时, 这一方法也能够实现克级规模的反应, 所获得的硼化产物能够实现进一步的转化.
刘文启, 沈振陆, 徐森苗. 三苯基砷/铱催化的非活化一级碳氢键的双硼化反应合成1,1-偕二硼烷[J]. 有机化学, 2022, 42(4): 1101-1110.
Wenqi Liu, Zhenlu Shen, Senmiao Xu. Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp3)—H Bonds Enabled by AsPh3/Iridium Catalysis[J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1101-1110.
Entry | Ligand | Solvent | Yieldb/% |
---|---|---|---|
1 | None | n-Hexane | 63 |
2 | P(C6F5)3 | n-Hexane | 51 |
3 | P(4-CF3-C6H4)3 | n-Hexane | 51 |
4 | AsPh3 | n-Hexane | 79 |
5c | AsPh3 | n-Hexane | Trace |
6d | AsPh3 | n-Hexane | 59 |
7e | AsPh3 | n-Hexane | 57 |
8f | AsPh3 | n-Hexane | 51 |
9 | AsPh3 | Cyclohexane | 82 |
10 | AsPh3 | THF | 51 |
11 | AsPh3 | 1,4-Dioxane | 51 |
Entry | Ligand | Solvent | Yieldb/% |
---|---|---|---|
1 | None | n-Hexane | 63 |
2 | P(C6F5)3 | n-Hexane | 51 |
3 | P(4-CF3-C6H4)3 | n-Hexane | 51 |
4 | AsPh3 | n-Hexane | 79 |
5c | AsPh3 | n-Hexane | Trace |
6d | AsPh3 | n-Hexane | 59 |
7e | AsPh3 | n-Hexane | 57 |
8f | AsPh3 | n-Hexane | 51 |
9 | AsPh3 | Cyclohexane | 82 |
10 | AsPh3 | THF | 51 |
11 | AsPh3 | 1,4-Dioxane | 51 |
[1] |
(a) Hall, D. T. Boronic Acids, Wiley-VCH, Weinheim, 2011.
|
(b) Zou, C.; Niu, C.; Liu, X.; Zhang, C. Chin. J. Org. Chem. 2021, 41, 4240. (in Chinese)
doi: 10.6023/cjoc202105058 |
|
( 邹辰晨, 牛长浩, 刘新宇, 张淳, 有机化学, 2021, 41, 4240.)
|
|
[2] |
(a) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
doi: 10.1016/j.tetlet.2018.04.061 pmid: 29379940 |
(b) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
doi: 10.1039/c7ob02978k pmid: 29379940 |
|
(c) Jo, W.; Lee, J. H.; Cho, S. H. Chem. Commun. 2021, 57, 4346.
doi: 10.1039/D1CC01048D pmid: 29379940 |
|
(d) Zhang, C.; Hu, W.; Morken, J. P. ACS Catal. 2021, 11, 10660.
doi: 10.1021/acscatal.1c02496 pmid: 29379940 |
|
[3] |
(a) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem., nt. Ed. 2018, 57, 5501.
|
(b) Li, X.; Hall, D. G. Angew. Chem., nt. Ed. 2018, 57, 10304.
|
|
(c) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036.
doi: 10.1021/jacs.7b12941 |
|
(d) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Chem. Commun. 2018, 54, 13375.
doi: 10.1039/C8CC07781A |
|
(e) Gava, R.; Fernández, E. Chem.-Eur. J. 2019, 25, 8013.
|
|
(f) Lee, B.; Chirik, P. J. J. Am. Chem. Soc. 2020, 142, 2429.
doi: 10.1021/jacs.9b11944 |
|
(g) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56(48), 6469.
doi: 10.1039/D0CC00614A |
|
(h) Li, X.; Hall, D. G. J. Am. Chem. Soc. 2020, 142, 9063.
doi: 10.1021/jacs.0c03207 |
|
(i) Zou, L.-H.; Fan, M.; Wang, L.; Liu, C. Chin. Chem. Lett. 2020, 31, 1911.
doi: 10.1016/j.cclet.2019.12.016 |
|
[4] |
(a) Harris, M. R.; Wisniewska, H. M.; Jiao, W.; Wang, X.; Bradow, J. N. Org. Lett. 2018, 20, 2867.
doi: 10.1021/acs.orglett.8b00899 pmid: 31184168 |
(b) Murray, S. A.; Luc, E. C. M.; Meek, S. J. Org. Lett. 2018, 20, 469.
doi: 10.1021/acs.orglett.7b03853 pmid: 31184168 |
|
(c) Lee, H.; Lee, Y.; Cho, S. H. Org. Lett. 2019, 21, 5912.
doi: 10.1021/acs.orglett.9b02050 pmid: 31184168 |
|
(d) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 9, 8503.
doi: 10.1021/acscatal.9b02931 pmid: 31184168 |
|
(e) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663.
doi: 10.1021/acs.oprd.9b00179 pmid: 31184168 |
|
(f) Nishino, S.; Hirano, K.; Miura, M. Org. Lett. 2019, 21, 4759.
doi: 10.1021/acs.orglett.9b01640 pmid: 31184168 |
|
(g) Shin, M.; Kim, M.; Hwang, C.; Lee, H.; Kwon, H.; Park, J.; Lee, E.; Cho, S. H. Org. Lett. 2020, 22, 2476.
doi: 10.1021/acs.orglett.0c00721 pmid: 31184168 |
|
(h) Green, J. C.; Zanghi, J. M.; Meek, S. J. J. Am. Chem. Soc. 2020, 142, 1704.
doi: 10.1021/jacs.9b11529 pmid: 31184168 |
|
(i) Zhang, C.; Wu, X.; Wang, C.; Zhang, C.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 6376.
doi: 10.1021/acs.orglett.0c02211 pmid: 31184168 |
|
(j) Kim, M.; Park, B.; Shin, M.; Kim, S.; Kim, J.; Baik, M.-H.; Cho, S. H. J. Am. Chem. Soc. 2021, 143, 1069.
doi: 10.1021/jacs.0c11750 pmid: 31184168 |
|
(k) Li, X.; Gao, G.; He, S.; Song, Q. Org. Chem. Front. 2021, 8, 4543.
doi: 10.1039/D1QO00632K pmid: 31184168 |
|
[5] |
(a) Namirembe, S.; Gao, C.; Wexler, R. P.; Morken, J. P. Org. Lett. 2019, 21, 4392.
doi: 10.1021/acs.orglett.9b01663 pmid: 31140815 |
(b) Kovalenko, M.; Yarmoliuk, D. V.; Serhiichuk, D.; Chernenko, D.; Smyrnov, V.; Breslavskyi, A.; Hryshchuk, O. V.; Kleban, I.; Rassukana, Y.; Tymtsunik, A. V.; Tolmachev, A. A.; Kuchkovska, Y. O.; Grygorenko, O. O. Eur. J. Org. Chem. 2019, 5624.
pmid: 31140815 |
|
(c) Sun, W.; Wang, L.; Hu, Y.; Wu, X.; Xia, C.; Liu, C. Nat. Commun. 2020, 11, 3113.
doi: 10.1038/s41467-020-16948-5 pmid: 31140815 |
|
[6] |
Wu, C.; Bao, Z.; Dou, B.; Wang, J. Chem.-Eur. J. 2021, 27, 2294.
|
[7] |
Kumar, N.; Reddy, R. R.; Masarwa, A. Chem.-Eur. J. 2019, 25, 8008.
|
[8] |
(a) Masaki, S.; Michael, S.; Ikuhiro, N.; Katsuhiro, S.; Takuya, K.; Tamejiro, H. Chem. Lett. 2006, 35, 1222.
doi: 10.1246/cl.2006.1222 |
(b) Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890.
doi: 10.1021/ol203413w |
|
(c) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem., nt. Ed. 2012, 51, 528.
|
|
(d) Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.
doi: 10.1021/jacs.6b03157 |
|
[9] |
(a) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 2002, 21, 1870.
doi: 10.1021/om011012b pmid: 26264986 |
(b) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
doi: 10.1021/ol403338s pmid: 26264986 |
|
(c) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.
doi: 10.1016/j.tetlet.2014.03.135 pmid: 26264986 |
|
(d) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
doi: 10.1039/c5ob01523e pmid: 26264986 |
|
[10] |
Eichhorn, A. F.; Kuehn, L.; Marder, T. B.; Radius, U. Chem. Commun. 2017, 53, 11694.
doi: 10.1039/C7CC06302D |
[11] |
Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418.
doi: 10.1039/C7OB00654C |
[12] |
(a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
doi: 10.1021/jacs.7b02518 pmid: 28306251 |
(b) He, Z.; Zhu, Q.; Hu, X.; Wang, L.; Xia, C.; Liu, C. Org. Chem. Front. 2019, 6, 900.
doi: 10.1039/C9QO00007K pmid: 28306251 |
|
(c) He, Z.; Fan, M.; Xu, J.; Hu, Y.; Wang, L.; Wu, X.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2019, 39, 3438. (in Chinese)
doi: 10.6023/cjoc201909008 pmid: 28306251 |
|
( 何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超, 有机化学, 2019, 39, 3438.)
pmid: 28306251 |
|
(d) Li, J.; Wang, H.; Qiu, Z.; Huang, C.-Y.; Li, C.-J. J. Am. Chem. Soc. 2020, 142, 13011.
doi: 10.1021/jacs.0c03813 pmid: 28306251 |
|
[13] |
(a) Li, L.; Gong, T.; Lu, X.; Xiao, B.; Fu, Y. Angew. Chem. Int. Ed. 2018, 57, 12935.
doi: 10.1002/anie.201805705 |
(b) Teo, W. J.; Ge, S. Angew. Chem. Int. Ed. 2018, 57, 1654.
doi: 10.1002/anie.201710389 |
|
(c) Wang, X.; Cui, X.; Li, S.; Wang, Y.; Xia, C.; Jiao, H.; Wu, L. Angew. Chem. Int. Ed. 2020, 59, 13608.
doi: 10.1002/anie.202002642 |
|
(d) Jin. S.; Liu, K.; Wang, S.; Song, Q. J. Am. Chem. Soc. 2021, 143, 13124.
doi: 10.1021/jacs.1c04248 |
|
[14] |
(a) Zweifel, G.; Arzoumanian, H. J. Am. Chem. Soc. 1967, 89, 291.
doi: 10.1021/ja00978a022 pmid: 28199104 |
(b) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306.
doi: 10.1021/ja01043a059 pmid: 28199104 |
|
(c) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96.
doi: 10.1021/ja00495a016 pmid: 28199104 |
|
(d) Soundararajan, R.; Matteson, D. S. Organometallics 1995, 14, 4157.
doi: 10.1021/om00009a018 pmid: 28199104 |
|
(e) Endo, K.; Hirokami, M.; Shibata, T. Synlett 2009, 1331.
pmid: 28199104 |
|
(f) Lee, S.; Li, D.; Yun, J. Chem.-Asian J. 2014, 9, 2440.
pmid: 28199104 |
|
(f) Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434.
doi: 10.1039/C5QO00426H pmid: 28199104 |
|
(g) Krautwald, S.; Bezdek, M. J.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 3868.
doi: 10.1021/jacs.7b00445 pmid: 28199104 |
|
(h) Gao, G.; Yan, J.; Yang, K.; Chen, F.; Song, Q. Green Chem. 2017, 19, 3997.
doi: 10.1039/C7GC01161J pmid: 28199104 |
|
(i) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249.
doi: 10.1039/C8QO00513C pmid: 28199104 |
|
(j) Docherty, J. H.; Nicholson, K.; Dominey, A. P.; Thomas, S. P. ACS Catal. 2020, 10, 4686.
doi: 10.1021/acscatal.0c00869 pmid: 28199104 |
|
[15] |
(a) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
doi: 10.1038/nchem.1150 pmid: 26010715 |
(b) Feng, X.; Jeon, H.; Yun, J. Angew. Chem. Int. Ed. 2013, 52, 3989.
doi: 10.1002/anie.201208610 pmid: 26010715 |
|
(c) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.; Marder, T. B. J. Organometallic Chem. 2002, 652, 77.
pmid: 26010715 |
|
(d) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 16140.
doi: 10.1021/ja510081r pmid: 26010715 |
|
(e) Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716.
doi: 10.1021/acs.orglett.5b01135 pmid: 26010715 |
|
[16] |
(a) Hu, J.; Zhao, Y.; Shi, Z. Nat. Catal. 2018, 1, 860.
doi: 10.1038/s41929-018-0147-9 |
(b) Zhang, L.; Si, X.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2020, 142, 10485.
doi: 10.1021/jacs.0c03197 |
|
(c) Hu, M.; Ge, S. Nat. Commun. 2020, 11, 765.
doi: 10.1038/s41467-020-14543-2 |
|
(d) Xu, J.-X.; Wu, F.-P.; Wu, X.-F. Catal. Commun. 2021, 149, 106205.
doi: 10.1016/j.catcom.2020.106205 |
|
[17] |
Cho, S. H.; Hartwig, J. F. Chem. Sci. 2014, 5, 694.
doi: 10.1039/C3SC52824C |
[18] |
Palmer, W. N.; Obligacion, J. V.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 766.
doi: 10.1021/jacs.5b12249 pmid: 26714178 |
[19] |
Palmer, W. N.; Zarate, C.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589.
doi: 10.1021/jacs.6b12896 pmid: 28156108 |
[20] |
Yamamoto, T.; Ishibashi, A.; Suginome, M. Org. Lett. 2019, 21, 6235.
doi: 10.1021/acs.orglett.9b02112 pmid: 31386387 |
[21] |
(a) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
doi: 10.1039/c0cs00156b pmid: 24553599 |
(b) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
doi: 10.1039/c3cs60418g pmid: 24553599 |
|
(c) Kuroda, Y.; Nakao, Y. Chem. Lett. 2019, 48, 1092.
doi: 10.1246/cl.190372 pmid: 24553599 |
|
(d) Wright, J. S.; Scott, P. J. H.; Steel, P. G. Angew. Chem. Int. Ed. 2021, 60, 2796.
doi: 10.1002/anie.202001520 pmid: 24553599 |
|
(e) Zou, X.; Xu, S. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
doi: 10.6023/cjoc202103020 pmid: 24553599 |
|
( 邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
pmid: 24553599 |
|
[22] |
(a) Liskey, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 12422.
doi: 10.1021/ja305596v pmid: 23398347 |
(b) Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924.
doi: 10.1021/ja305694r pmid: 23398347 |
|
(c) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2013, 135, 2947.
doi: 10.1021/ja3126239 pmid: 23398347 |
|
(d) Cho, S. H.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 8157.
doi: 10.1021/ja403462b pmid: 23398347 |
|
(e) Larsen, M. A.; Cho, S. H.; Hartwig, J. J. Am. Chem. Soc. 2016, 138, 762.
doi: 10.1021/jacs.5b12153 pmid: 23398347 |
|
(f) Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. J. Am. Chem. Soc. 2019, 141, 6817.
doi: 10.1021/jacs.9b01952 pmid: 23398347 |
|
(g) Reyes, R. L.; Sato, M.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2020, 142, 589.
doi: 10.1021/jacs.9b12013 pmid: 23398347 |
|
(h) Reyes, R. L.; Sato, M.; Iwai, T.; Suzuki, K.; Maeda, S.; Sawamura, M. Science 2020, 369, 970.
doi: 10.1126/science.abc8320 pmid: 23398347 |
|
(i) Yang, Y.; Chen, L.; Xu, S. Angew. Chem. Int. Ed. 2021, 60, 3524.
doi: 10.1002/anie.202013568 pmid: 23398347 |
|
(j) Du, R.; Liu, L.; Xu, S. Angew. Chem. Int. Ed. 2021, 60, 5843.
doi: 10.1002/anie.202016009 pmid: 23398347 |
|
(k) Liu, L.; Du, R.; Xu, S. Chin. J. Org. Chem. 2021, 41, 1572. (in Chinese)
doi: 10.6023/cjoc202101009 pmid: 23398347 |
|
( 刘路华, 杜荣荣, 徐森苗, 有机化学, 2021, 41, 1572.)
pmid: 23398347 |
|
[23] |
(a) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4648.
doi: 10.1021/ja9542451 |
(b) Walton, J. C.; McCarroll, A. J.; Chen, Q.; Carboni, B.; Nziengui, R. J. Am. Chem. Soc. 2000, 122, 5455.
doi: 10.1021/ja9944812 |
|
[24] |
Sasaki, I.; Taguchi, J.; Hiraki, S.; Ito, H.; Ishiyama, T. Chem.-Eur. J. 2015, 21, 9236.
|
[25] |
Crystallographic data for 18 could be found in the Supporting Information. CCDC 2104779 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
|
[26] |
Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem. Int. Ed. 2016, 55, 9690.
doi: 10.1002/anie.201603329 |
[27] |
Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 4651.
doi: 10.1021/jo060692v |
[1] | 关丽, 周艳艳, 毛永爆, 付恺森, 关文惠, 付义乐. 甲川链修饰菁染料的合成研究进展[J]. 有机化学, 2023, 43(8): 2682-2698. |
[2] | 梁凯淳, 白科研, 戴雷, 刘源, 叶泽聪, 霍延平. 基于四氢喹啉的多重共振热活化延迟荧光材料的设计、合成及电致发光性能研究[J]. 有机化学, 2023, 43(5): 1799-1807. |
[3] | 杜琳琳, 张华. 芳烃与烷烃化合物参与的光化学与电化学硼化反应[J]. 有机化学, 2023, 43(5): 1726-1741. |
[4] | 徐晓阳, 刘美艳, 李成龙, 刘旭光. 1,2-硼氮杂芳烃在中国的研究进展[J]. 有机化学, 2023, 43(5): 1611-1644. |
[5] | 蒋旺, 史壮志. 芳烃间/对位选择性碳氢硼化反应研究进展[J]. 有机化学, 2023, 43(5): 1691-1705. |
[6] | 宋树勇, 徐森苗. 三氟甲基烯烃的选择性C-F键活化最新进展[J]. 有机化学, 2023, 43(2): 411-425. |
[7] | 方通昌, 徐良轩, 秦玉承, 姜南权, 刘超. 一类新型卤化偕二硼试剂的合成[J]. 有机化学, 2023, 43(2): 777-780. |
[8] | 刘鹏, 钟富明, 廖礼豪, 谭伟强, 赵晓丹. 炔烃参与的去芳构化反应构建螺环己二烯酮类化合物的研究进展[J]. 有机化学, 2023, 43(12): 4019-4035. |
[9] | 孙美娇, 谭晶, 谭玉, 彭进松, 陈春霞. 钯催化3-(2-氨基嘧啶-4-基)吲哚2位C—H键芳基化反应的研究[J]. 有机化学, 2023, 43(11): 3945-3959. |
[10] | 徐晓阳, 刘美艳, 李成龙, 吴晓明, 刘旭光. 1,4-硼氮杂芳烃在中国的研究进展[J]. 有机化学, 2023, 43(11): 3826-3843. |
[11] | 曹丽琴, 杨小琴, 李茂秋, 刘琳, 于俊婷, 谭华. 双极传输供体-受体(D-A)型铱(III)配合物近红外发光材料的合成及其电致发光性能[J]. 有机化学, 2022, 42(6): 1831-1838. |
[12] | 聂飞, 黄观波, 戴雷, 陈少福, 籍少敏, 陈嘉雄, 霍延平. 基于苯并呋喃-异喹啉的红光铱配合物的合成及电致发光性质[J]. 有机化学, 2022, 42(5): 1423-1430. |
[13] | 谢吴成, 陈浒, 黎韵越, 林洁玲, 陈婉雯, 石君君. 导向碳氢键活化与不饱和分子的电氧化环化反应[J]. 有机化学, 2022, 42(5): 1286-1306. |
[14] | 龚婷婷, 陈智斌, 刘妙昌, 成江. 2-苯并呋喃-1(3H)-酮的合成研究进展[J]. 有机化学, 2022, 42(4): 1085-1100. |
[15] | 张苗苗, 韩波, 马豪杰, 赵亮, 王记江, 张玉琦. 以氢硅烷为氢源: 铱催化N-杂环化合物的氢化[J]. 有机化学, 2022, 42(4): 1170-1178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||