有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3588-3605.DOI: 10.6023/cjoc202203016 上一篇 下一篇
综述与进展
毛雅君, 邵香敏, 李阳杰, 曹瑞梅, 冯亚莉, 翟广玉*()
收稿日期:
2022-03-06
修回日期:
2022-04-16
发布日期:
2022-07-05
通讯作者:
翟广玉
基金资助:
Yajun Mao, Xiangmin Shao, Yangjie Li, Ruimei Cao, Yali Feng, Guangyu Zhai()
Received:
2022-03-06
Revised:
2022-04-16
Published:
2022-07-05
Contact:
Guangyu Zhai
Supported by:
文章分享
槲皮素是天然的抗氧化剂, 主要存在于蔬菜、水果等植物中, 可调节众多与疾病进展有关的细胞内外信号通路, 能抗炎、抗病毒、抗癌、预防和治疗心脑血管疾病等, 具有广泛的药理活性. 由于槲皮素的结构特征, 其生物利用度低, 限制了其在临床上的应用. 然而, 槲皮素的低分子质量和易修饰的化学基团, 使其具有药物开发的潜力. 因此, 研究人员通过各种方法设计合成新的槲皮素衍生物, 以改善其不利因素, 已经合成了许多性能优良、溶解性能好、生物利用度高、代谢稳定、毒副作用小且生物活性显著的槲皮素衍生物. 综述了近年来槲皮素衍生物的合成及其生物活性研究进展, 为槲皮素衍生物的进一步开发提供参考.
毛雅君, 邵香敏, 李阳杰, 曹瑞梅, 冯亚莉, 翟广玉. 槲皮素衍生物的合成研究进展[J]. 有机化学, 2022, 42(11): 3588-3605.
Yajun Mao, Xiangmin Shao, Yangjie Li, Ruimei Cao, Yali Feng, Guangyu Zhai. Research Progress on the Synthesis of Quercetin Derivatives[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3588-3605.
[1] |
Xu, D.; Hu, M. J.; Wang, Y. Q.; Cui, Y. L. Molecules 2019, 24, 1123.
doi: 10.3390/molecules24061123 |
[2] |
Ulusoy, H.; Sanlier, N. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290.
doi: 10.1080/10408398.2019.1683810 |
[3] |
Jocelyn, F.; Elias, A.; Edgar, P.; Catalina, C. P.; Hernan, S. J. Agric. Food Chem. 2017, 65, 11002.
doi: 10.1021/acs.jafc.7b05214 |
[4] |
Lesjak, M.; Beara, I.; Simin, I.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Neda, M. D. J. Funct. Foods 2018, 40, 68.
doi: 10.1016/j.jff.2017.10.047 |
[5] |
Saakre, M.; Mathew, D.; Ravisankar, V. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 21.
doi: 10.1186/s43088-021-00107-w |
[6] |
Abdur, R.; Imran, M.; Imtiaz, A. K.; Mujeeb, R.; Gilani, S. A.; Zaffar, M.; Mubarak, M. S. Phytother. Res. 2018, 32, 2109.
doi: 10.1002/ptr.6155 pmid: 30039547 |
[7] |
Reyes, F. M.; Carrasco, P. C. Int. J. Mol. Sci. 2019, 20, 3177.
doi: 10.3390/ijms20133177 |
[8] |
Tang, S. M.; Deng, X. T.; Zhou, J.; Li, Q. P.; Ge, X. X.; Miao, L. Biomed. Pharmacother. 2020, 1219, 109604.
|
[9] |
Rahul, V. P.; Bhupendra, M. M.; Surendra, K. S.; Riyaz, S.; Vijay, S.; Shin, H. S. Eur. J. Med. Chem. 2018, 155, 889.
doi: S0223-5234(18)30544-0 pmid: 29966915 |
[10] |
Salehi, B.; Machin, L.; Monzote, L. ACS Omega 2020, 5, 11849.
doi: 10.1021/acsomega.0c01818 |
[11] |
Magar, R. T.; Sohng, J. K. J. Microbiol. Biotechnol. 2020, 30, 11.
doi: 10.4014/jmb.1907.07003 |
[12] |
Massi, A.; Bortolini, O.; Ragno, D.; Tatiana, B.; Gianni, S.; Massimo, T.; Carmela, D. R. Molecules 2017, 22, 1270.
doi: 10.3390/molecules22081270 |
[13] |
Sharma, A.; Kashyap, D.; Sak, K.; Tuli, H. S.; Sharma, A. K. Pharm. Pat. Anal. 2018, 7, 15.
doi: 10.4155/ppa-2017-0030 pmid: 29227203 |
[14] |
Kim, M. K.; Choo, H.; Chong, Y. J. Med. Chem. 2014, 57, 7216.
doi: 10.1021/jm500290c |
[15] |
Kellici, T. F.; Chatziat, M. V.; Lee, M. S.; Sayyad, N.; Geromichalou, E.; Vrettos, E. I.; Tsiailanis, A. D.; Chi, S. W.; Geromichalos, G. D.; Thomas, M.; Tzakos, A. G. Org. Biomol. Chem. 2017, 15, 7956.
doi: 10.1039/c7ob02045g pmid: 28902204 |
[16] |
Kim, M. K.; Park, K.; Yeo, W.; Choo, H.; Chong, Y. Bioorg. Med. Chem. 2009, 17, 1164.
doi: 10.1016/j.bmc.2008.12.043 |
[17] |
Huang, H.; Jia, Q.; Ma, J.; Qin, G. R.; Chen, Y. Y.; Xi, Y. H.; Lin, L. P.; Zhu, W. L.; Ding, J.; Jiang, H. L.; Liu, H. Eur. J. Med. Chem. 2009, 44, 1982.
doi: 10.1016/j.ejmech.2008.09.051 pmid: 19041163 |
[18] |
Lo, S.; Leung, E.; Fedrizzi, B.; Barker, D. Molecules 2021, 26, 1608.
doi: 10.3390/molecules26061608 |
[19] |
Zhong, D.; Liu, M.; Cao, Y.; Zhu, Y. L.; Bian, S. H.; Zhou, J. Y.; Wu, F. J.; Ryu, K. C.; Zhou, L.; Ye, D. Y. Molecules 2015, 20, 6978.
doi: 10.3390/molecules20046978 |
[20] |
Carullo, G.; Ahmed, A.; Trezza, A.; Spiga, O.; Brizzi, A.; Saponara, S.; Fusi, F.; Aiello, F. Bioorg. Chem. 2020, 105, 104404.
doi: 10.1016/j.bioorg.2020.104404 |
[21] |
Rasheed, A.; Lathika, G.; Raju, Y. P.; Mansoor, K. P.; Azeem, A. K.; Balan, N. Med. Chem. Res. 2015, 25, 70.
doi: 10.1007/s00044-015-1469-7 |
[22] |
Wei, Y. L.; Peng, A. Y.; Wang, B.; Ma, L.; Peng, G. P.; Du, Y. D.; Tang, J. M. Eur. J. Med. Chem. 2014, 74, 751.
doi: 10.1016/j.ejmech.2013.03.025 |
[23] |
Osonga, F. J.; Onyango, J. O.; Mwilu, S. K.; Noah, N. M.; Schulte, J.; An, M.; Sadik, O. A. Tetrahedron Lett. 2017, 58, 1474.
doi: 10.1016/j.tetlet.2017.02.085 |
[24] |
Valentová, K.; Káňová, K. D.; Meo, F.; Pelantová, H.; Chambers, C.; Rydlová, L.; Petrásková, L.; Křenková, A.; Cvačka, J.; Trouilla, S. P.; Křen, V. Int. J. Mol. Sci. 2017, 18, 2231.
doi: 10.3390/ijms18112231 |
[25] |
Barron, D.; Ibrahim, R. K. Tetrahedron 1987, 43, 5197.
doi: 10.1016/S0040-4020(01)87695-X |
[26] |
Al-Jabban, S. M. R.; Zhang, X.; Chen, G.; Mekuria, E. A.; Rakotondraibe, L. H.; Chen, Q. H. Nat. Prod. Commun. 2015, 10, 2113.
pmid: 26882678 |
[27] |
Li, X.; Chen, G.; Zhang, X.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q. H. Bioorg. Med. Chem. Lett. 2016, 26, 4241.
doi: 10.1016/j.bmcl.2016.07.050 |
[28] |
Vue, B.; Zhang, X.; Lee, T.; Nair, N.; Zhang, S.; Chen, G.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q. H. Bioorg. Med. Chem. 2017, 25, 4845.
doi: 10.1016/j.bmc.2017.07.035 |
[29] |
Rajaram, P.; Jiang, Z.; Chen, G.; Rivera, A.; Phasakda, A.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q. H. Bioorg. Chem. 2019, 87, 227.
doi: 10.1016/j.bioorg.2019.03.047 |
[30] |
Mukherjee, A.; Mishra, S.; Kotla, N. K.; Manna, K.; Roy, S.; Kunu, B.; Bhattacharya, D.; Saha, K. S.; Talukdar, A. ACS Omega 2019, 4, 7285.
doi: 10.1021/acsomega.9b00143 |
[31] |
Zhai, G. Y..; Yan, Z. T.; Qu, W. T.; Duan, Y. D. CN 103239437, 2014.
|
[32] |
Zhai, G. Y..; Qu, W. T.; Yan, Z. T.; Ma, H. Y.; Wang, J. W. CN 103214445, 2013.
|
[33] |
Feng, Y. L.; Li, K.; Liu, J. H.; Zhai, G. Y. Chin. Herb Med. 2020, 51, 4133. (in Chinese)
|
( 冯亚莉, 李珂, 刘金海, 翟广玉, 中草药, 2020, 51, 4133.)
|
|
[34] |
Sohda, T.; Mizuno, K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Chem. Pharm. Bull. 1982, 30, 3580.
doi: 10.1248/cpb.30.3580 |
[35] |
Lehmann, J. M.; Moore, L. B.; Smith, T. A.; Wilkison, W. O.; Willson, T. M.; Kliewer, S. A. J. Biol. Chem. 1995, 270, 12953.
doi: 10.1074/jbc.270.22.12953 |
[36] |
Buckle, D. R.; Cantello, B. C. C.; Cawthorne, M. A.; Coyle, P. J.; Dean, D. K.; Failer, A.; Haigh, D.; Hindley, R. M.; Jefcott, L. J.; Lister, C. A.; Pinto, I. L.; Rami, H. K.; Smith, D. G.; Smith, S. A. Bioorg. Med. Chem. Lett. 1996, 6, 2127.
|
[37] |
Lee, J. Y.; Park, W. H.; Cho, M. K.; Yun, H. J.; Chung, B. H.; Pak, Y. K.; Hahn, H. G.; Cheon, S. H. Arch. Pharm. Res. 2005, 28, 142.
doi: 10.1007/BF02977705 |
[38] |
Deng, G. B.; Wan, B.; Hu, H. Z.; Chen, J. R.; Yu, M. Q. Chin. J. Appl. Environ. Biol. 2004, 10, 695.
|
[39] |
Han, Y.; Ding, Y.; Xie, D.; Hu, D.; Li, P.; Li, X.; Xue, W.; Jin, L.; Song, B. Eur. J. Med. Chem. 2015, 92, 732.
doi: 10.1016/j.ejmech.2015.01.017 pmid: 25618020 |
[40] |
Ma, J.; Li, P.; Li, X. Y.; Shi, Q. C.; Wan, Z. H.; Hu, D. Y.; Jin, L. H.; Song, H. B. J. Agric. Food Chem. 2014, 62, 8928.
doi: 10.1021/jf502162y |
[41] |
Luo, H.; Liu, J. J.; Jin, L. H.; Hu, D. H.; Chen, H. Z.; Yang, S.; Wu, J.; Song, B. A. Eur. J. Med. Chem. 2013, 63, 662.
doi: 10.1016/j.ejmech.2013.02.035 |
[42] |
Ohtani, H.; Ikegawa, T.; Honda, Y.; Kohyama, N.; Morimoto, S.; Shoyama, Y.; Juichi, M.; Naito, M.; Tsuruo, T.; Sawada, Y. Pharm. Res. 2007, 24, 1936.
doi: 10.1007/s11095-007-9320-6 |
[43] |
Yuan, J.; Wong, I. L. K.; Jiang, T.; Wang, S. W.; Liu, T.; Wen, B. J.; Chow, L. M. C.; Sheng, B. W. Eur. J. Med. Chem. 2012, 54, 413.
doi: 10.1016/j.ejmech.2012.05.026 pmid: 22743241 |
[44] |
Buravlev, E. V.; Shevchenko, O. G.; Chukicheva, I. Y.; Kutchin, A. V. Chem. Pap. 2018, 72, 201.
doi: 10.1007/s11696-017-0272-y |
[45] |
Nemoto, H.; Kawamura, T.; Hayashi, M.; Mukai, R.; Terao, J. Synthesis 2012, 44, 1308.
doi: 10.1055/s-0031-1290756 |
[46] |
Kawamura, T.; Hayashi, M.; Mukai, R.; Terao, J.; Nemoto, H. Synthesis 2013, 46, 170.
doi: 10.1055/s-0033-1338559 |
[47] |
Kimura, Y.; Oyama, K.; Kondo, T.; Yoshida, K. Tetrahedron Lett. 2017, 58, 919.
doi: 10.1016/j.tetlet.2017.01.065 |
[48] |
Al-Anssari, R. A.; Elias, R. S.; Al-Jadan, S. A. Am. J. Appl. Sci. 2019, 16, 143.
doi: 10.3844/ajassp.2019.143.161 |
[49] |
Martins, I.; Catarina, C.; Valentina, G.; Joao, L. F. S.; Goncalo, C. J.; Joao, P. T.; Abel, J. S. C.; Vieira, C. M.; Alexandra, M. M. A. J. Med. Chem. 2015, 58, 4250.
doi: 10.1021/acs.jmedchem.5b00230 pmid: 25906385 |
[50] |
Hua, G. X.; Cordes, D. B.; Slawin, A.; Woollins, J. D. ACS Omega 2020, 5, 11737.
doi: 10.1021/acsomega.0c01064 |
[51] |
Shastrala, K.; Kalam, S.; Damerakonda, K.; Bhava, S.; Sheshagiri, B.; Kumar, H.; Guda, R.; Kasula, M.; Bedada, S. K. Future J. Pharm. Sci. 2021, 7, 99.
|
[52] |
Mulholland, P. J.; Ferry, D. R.; Anderson, D.; Hussain, S. A.; Young, A. M.; Cook, J. E.; Hodgkin, E.; Seymour, L. W.; Kerr, D. J. Ann. Oncol. 2001, 12, 245.
pmid: 11300332 |
[53] |
Alizadeh, S. R.; Ebrahimzadeh, M. A. Eur. J. Med. Chem. 2021, 229, 114068.
doi: 10.1016/j.ejmech.2021.114068 |
[54] |
Alizadeh, S. R.; Ebrahimzadeh, M. A. J. Mol. Struct. 2022, 1254, 132392.
doi: 10.1016/j.molstruc.2022.132392 |
[1] | 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024, 44(2): 378-397. |
[2] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[3] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[4] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[5] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[6] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[7] | 陈珊, 陈志林, 胡琼, 蒙艳双, 黄悦, 陶萍芳, 卢丽如, 黄国保. 含双硫脲基团分子钳在非极性溶剂中识别中性分子[J]. 有机化学, 2024, 44(1): 277-281. |
[8] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[9] | 徐利军, 李宗军, 韩福社, 高翔. N,N-二甲基甲酰胺促进的富勒烯稠合噁唑啉衍生物的合成[J]. 有机化学, 2024, 44(1): 242-250. |
[10] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[11] | 马翠云, 罗海澜, 张福华, 郭丹, 陈树兴, 王飞. 3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究[J]. 有机化学, 2024, 44(1): 216-223. |
[12] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[13] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[14] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[15] | 曹瑞霞, 贾玉萍. 含香豆素的吡咯并[2,3-d]嘧啶衍生物的合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3304-3311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||