有机化学 ›› 2023, Vol. 43 ›› Issue (8): 2826-2836.DOI: 10.6023/cjoc202212015 上一篇 下一篇
研究论文
王锋a,b, 陈钰b, 裴鸿艳b, 张静a,b,*(), 张立新a,b,*()
收稿日期:
2022-12-12
修回日期:
2023-02-15
发布日期:
2023-04-21
基金资助:
Feng Wanga,b, Yu Chenb, Hongyan Peib, Jing Zhanga,b(), Lixin Zhanga,b()
Received:
2022-12-12
Revised:
2023-02-15
Published:
2023-04-21
Contact:
*E-mail: Supported by:
文章分享
为了寻找新型高效的抗菌先导化合物, 采用活性亚结构拼接法, 设计合成了17个含哌啶的新型1,2,4-噁二唑类衍生物4a~4b和6a~6o, 其结构经1H NMR、13C NMR和高分辨质谱(HRMS)表征. N-(1-苯甲酰基哌啶-4-基)-4-(5-(三氟甲基)-1,2,4-噁二唑-3-基)苯甲酰胺(6e)结构由X射线单晶衍射法加以确证. 抗菌活性测试结果表明: 在浓度为3.13 mg/L时, N-(1-乙酰基哌啶-4-基)-4-(5-(三氟甲基)-1,2,4-噁二唑-3-基)苯甲酰胺(6a)、N-(1-(环丙甲酰基)哌啶-4-基)-4-(5-(三氟甲基)-1,2,4-噁二唑-3-基)苯甲酰胺(6c)、6e、4-((4-(5-(三氟甲基)-1,2,4-噁二唑-3-基)苯甲酰胺基)甲基)哌啶-1-甲酸叔丁酯(4b)和N-((1-(苯甲酰基)哌啶-4-基)甲基-4-(5-(三氟甲基)-1,2,4-噁二唑-3-基)苯甲酰胺(6o)对大豆锈病(Phakopsora pachyrhiz)的抑制率分别为70%、82%、95%、78%和98%, 优于Flufenoxadiazam (30%)和对照药剂苯醚甲环唑(50%); 在浓度为1.56 mg/L时, 化合物6e、6o对大豆锈病仍有80%和75%的抑制率. 化合物6e、6o在浓度为0.10 mg/L时对玉米锈病(Puccinia sorghi)也有着92%和90%抑制率的优异抗菌活性. 分子对接模拟表明, 化合物6e与组蛋白去乙酰化酶4 (HDACs 4)有着多种相互作用, 它与PHE 227及PHE 226形成的氢键作用可能是化合物6e抗菌活性优异的重要原因.
王锋, 陈钰, 裴鸿艳, 张静, 张立新. 含哌啶的新型1,2,4-噁二唑类衍生物的设计合成及抗真菌活性研究[J]. 有机化学, 2023, 43(8): 2826-2836.
Feng Wang, Yu Chen, Hongyan Pei, Jing Zhang, Lixin Zhang. Design, Synthesis and Antifungal Activities of Novel 1,2,4-Oxadiazole Derivatives Containing Piperidine[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2826-2836.
Compd. | n | Inhibition rate/% | ||
---|---|---|---|---|
6.25 mg/L | 3.13 mg/L | 1.56 mg/L | ||
4a | 0 | 15 | 0 | 0 |
6a | 0 | 92 | 70 | 0 |
6b | 0 | 10 | 0 | 0 |
6c | 0 | 90 | 82 | 30 |
6d | 0 | 20 | 0 | 0 |
6e | 0 | 98 | 95 | 80 |
6f | 0 | 75 | 40 | 0 |
6g | 0 | 0 | 0 | 0 |
6h | 0 | 70 | 0 | 0 |
6i | 0 | 20 | 0 | 0 |
6j | 0 | 60 | 0 | 0 |
6k | 0 | 50 | 0 | 0 |
4b | 1 | 85 | 78 | 42 |
6l | 1 | 65 | 40 | 30 |
6m | 1 | 72 | 20 | 0 |
6n | 1 | 95 | 40 | 0 |
6o | 1 | 100 | 98 | 75 |
Flufenoxadiazam | — | 100 | 30 | 0 |
苯醚甲环唑a | — | 95 | 50 | 15 |
嘧菌酯a | — | 100 | 100 | 100 |
Compd. | n | Inhibition rate/% | ||
---|---|---|---|---|
6.25 mg/L | 3.13 mg/L | 1.56 mg/L | ||
4a | 0 | 15 | 0 | 0 |
6a | 0 | 92 | 70 | 0 |
6b | 0 | 10 | 0 | 0 |
6c | 0 | 90 | 82 | 30 |
6d | 0 | 20 | 0 | 0 |
6e | 0 | 98 | 95 | 80 |
6f | 0 | 75 | 40 | 0 |
6g | 0 | 0 | 0 | 0 |
6h | 0 | 70 | 0 | 0 |
6i | 0 | 20 | 0 | 0 |
6j | 0 | 60 | 0 | 0 |
6k | 0 | 50 | 0 | 0 |
4b | 1 | 85 | 78 | 42 |
6l | 1 | 65 | 40 | 30 |
6m | 1 | 72 | 20 | 0 |
6n | 1 | 95 | 40 | 0 |
6o | 1 | 100 | 98 | 75 |
Flufenoxadiazam | — | 100 | 30 | 0 |
苯醚甲环唑a | — | 95 | 50 | 15 |
嘧菌酯a | — | 100 | 100 | 100 |
Compd. | n | R | EC50/(mg•L-1) | 毒力回归方程 | R2 |
---|---|---|---|---|---|
6a | 0 | CH3CO | 2.942 | y=-0.2162+1.5281x | 0.9168 |
6c | 0 | cyclo-C3H5CO | 2.093 | y=0.1802+0.9966x | 0.8480 |
6ea | 0 | PhCO | 0.952 | y=0.5216+1.0032x | 0.9873 |
6f | 0 | Naph-CO | 3.877 | y=-0.2331+1.2457x | 0.9985 |
4b | 1 | Boc-CO | 1.730 | y=0.3299+0.7142x | 0.8683 |
6l | 1 | CH3CO | 3.810 | y=0.1623+0.5813x | 0.9423 |
6m | 1 | cyclo-C3H5CO | 4.534 | y=-0.2851+1.1959x | 0.9382 |
6n | 1 | PhSO2 | 3.361 | y=-0.3308+1.5779x | 0.9918 |
6oa | 1 | PhCO | 1.135 | y=0.4407+1.0796x | 0.9929 |
Flufenoxadiazam | — | — | 3.428 | y=-0.3886+1.6610x | 0.9494 |
苯醚甲环唑b | — | — | 3.125 | y=1.3288x-0.1242 | 0.9833 |
Compd. | n | R | EC50/(mg•L-1) | 毒力回归方程 | R2 |
---|---|---|---|---|---|
6a | 0 | CH3CO | 2.942 | y=-0.2162+1.5281x | 0.9168 |
6c | 0 | cyclo-C3H5CO | 2.093 | y=0.1802+0.9966x | 0.8480 |
6ea | 0 | PhCO | 0.952 | y=0.5216+1.0032x | 0.9873 |
6f | 0 | Naph-CO | 3.877 | y=-0.2331+1.2457x | 0.9985 |
4b | 1 | Boc-CO | 1.730 | y=0.3299+0.7142x | 0.8683 |
6l | 1 | CH3CO | 3.810 | y=0.1623+0.5813x | 0.9423 |
6m | 1 | cyclo-C3H5CO | 4.534 | y=-0.2851+1.1959x | 0.9382 |
6n | 1 | PhSO2 | 3.361 | y=-0.3308+1.5779x | 0.9918 |
6oa | 1 | PhCO | 1.135 | y=0.4407+1.0796x | 0.9929 |
Flufenoxadiazam | — | — | 3.428 | y=-0.3886+1.6610x | 0.9494 |
苯醚甲环唑b | — | — | 3.125 | y=1.3288x-0.1242 | 0.9833 |
Compd. | Erysiphe cichoracearum | Blumeria graminis | Puccinia sorghi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 mg/L | 6.25 mg/L | 0.39 mg/L | 100 mg/L | 6.25mg/L | 0.39 mg/L | 6.25 mg/L | 1.56 mg/L | 0.39 mg/L | 0.10 mg/L | |||
6e | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 92 | ||
6o | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 90 | ||
Flufenoxadiazam | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 50 | 20 | ||
氟唑菌酰胺a | 100 | 100 | 98 | —b | — | — | — | — | — | — | ||
烯肟菌胺a | — | — | — | 100 | 100 | 100 | — | — | — | — | ||
嘧菌酯a | — | — | — | — | — | — | 100 | 100 | 100 | 95 |
Compd. | Erysiphe cichoracearum | Blumeria graminis | Puccinia sorghi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 mg/L | 6.25 mg/L | 0.39 mg/L | 100 mg/L | 6.25mg/L | 0.39 mg/L | 6.25 mg/L | 1.56 mg/L | 0.39 mg/L | 0.10 mg/L | |||
6e | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 92 | ||
6o | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 100 | 90 | ||
Flufenoxadiazam | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 50 | 20 | ||
氟唑菌酰胺a | 100 | 100 | 98 | —b | — | — | — | — | — | — | ||
烯肟菌胺a | — | — | — | 100 | 100 | 100 | — | — | — | — | ||
嘧菌酯a | — | — | — | — | — | — | 100 | 100 | 100 | 95 |
[1] |
Oloka, H. K.; Tukamuhabwa, P.; Sengooba, T.; Adipala, E.; Kabayi, P. Crop Prot. 2009, 28, 1076.
doi: 10.1016/j.cropro.2009.08.008 |
[2] |
Pretorius, Z. A.; Kloppers, F. J.; Frederick, R. D. Plant Disease 2001, 85, 1288.
doi: 10.1094/PDIS.2001.85.12.1288C pmid: 30831805 |
[3] |
Schneider, R. W.; Hollier, C. A.; Whitam, H. K.; Palm, M. E.; McKemy, J. M.; Hernández, J. R.; Levy, L.; DeVries-Paterson, R. Plant Disease 2005, 89, 774.
doi: 10.1094/PD-89-0774A pmid: 30791253 |
[4] |
Zhang, Z. M.; Kong, X. B.; Lv, L. Z.; Wang, G.; Wu, L.; Qiao, C.; Liu, M. J. Agrochemicals 2019, 58, 634. (in Chinese)
|
( 张振明, 孔宪滨, 吕良忠, 王刚, 吴垒, 乔陈, 刘敏进, 农药, 2019, 58, 634.)
|
|
[5] |
Wingter, C.; Fehr, M. In Recent Highlights in the Discovery and Optimization of Crop Protection Products, Eds.: Maienfisch, P.; Mangelinckx, S., Elsevier, Amsterdam, 2021, p. 401.
|
[6] |
Shen, L. H.; Jiao, J.; Wang, Y.; Song, Y. Q.; Xu, Y. N.; Sun, H. Agrochemicals 2015, 54, 38. (in Chinese)
|
( 沈丽红, 焦姣, 王远, 宋玉泉, 徐亚男, 孙慧, 农药, 2015, 54, 38.)
|
|
[7] |
Rosa, C. R. E.; Spehar, C. R.; Liu, J. Q. J. Plant. Pathol. Microb. 2015, 6, 307.
|
[8] |
Li, Y. Ph.D. Dissertation, Shenyang Agricultural University, Shenyang, 2018. (in Chinese)
|
( 李阳, 博士论文, 沈阳农业大学, 沈阳, 2018.)
|
|
[9] |
Ning, G. H.; Zhao, W. T.; Bian, Q.; Tang, X. Y. Chin. J. Org. Chem. 2014, 34, 1800. (in Chinese)
doi: 10.6023/cjoc201403026 |
( 宁国慧, 赵温涛, 边强, 唐向阳, 有机化学, 2014, 34, 1800.)
doi: 10.6023/cjoc201403026 |
|
[10] |
Wang, Y.; Ye, H.; Qian, C.; Yao, W.; Li, H.; Wang, K.; Hu, L. P.; Li, L.; Wu, J. M.; Dai, H. Chin. J. Org. Chem. 2002, 40, 232. (in Chinese)
doi: 10.6023/cjoc201908006 |
( 王杨, 叶浩, 钱程, 姚炜, 李宏, 王凯, 胡兰萍, 李玲, 吴锦明, 戴红, 有机化学, 2020, 40, 232.)
doi: 10.6023/cjoc201908006 |
|
[11] |
Glomb, T.; Swiatek, P. Int. J. Mol. Sci. 2021, 22, 6979.
doi: 10.3390/ijms22136979 |
[12] |
Zhang, H. Z.; Kasibhatla, S.; Kuemmerle, J.; Kemnitzer, W.; Ollis-Mason, K.; Qiu, L.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S. X. J. Med. Chem. 2005, 48, 5215.
doi: 10.1021/jm050292k |
[13] |
Zhang, L.; Jiang, C. S.; Gao, L. X.; Gong, J. X.; Wang, Z. H.; Li, J. Y.; Li, J.; Li, X. W.; Guo, Y. W. J. Bioorg. Med. Chem. Lett. 2016, 26, 778.
doi: 10.1016/j.bmcl.2015.12.097 |
[14] |
Yatam, S.; Gundla, R.; Jadav, S. S.; Pedavenkatagari, N. R.; Chimakurthy, J.; Rani, B. N.; Kedam, T. J. Mol. Struct. 2018, 1159, 193.
doi: 10.1016/j.molstruc.2018.01.060 |
[15] |
Sun, Q.; Shen, C.; Li, X.; Lin, Q. H.; Lu, M. J. Mater. Chem. A 2017, 5, 110.
|
[16] |
Cai, J.; Wei, H.; Hong, K. H.; Wu, X.; Zong, X.; Cao, M.; Zong, X.; Li, L, S.; Sun, C. L.; Chen, J. Q.; Ji, M. Eur. J. Med. Chem. 2015. 23, 3457.
|
[17] |
Cai, J.; Wei, H.; Hong, K. H.; Wu, X.; Cao, M.; Zong, X.; Li, L.; Sun, C.; Chen, J.; Ji, M. Eur. J. Med. Chem. 2015, 96, 1.
doi: 10.1016/j.ejmech.2015.04.002 |
[18] |
Biernacki, K.; Daśko, M.; Ciupak, O.; Kubiński, K.; Rachon, J.; Demkowicz, S. Pharmaceuticals 2020, 13, 111.
doi: 10.3390/ph13060111 |
[19] |
Liu, C. F. Ph.D. Dissertation, Shandong University, Jinan, 2020. (in Chinese)
|
( 刘晨飞, 博士论文, 山东大学, 济南, 2020.)
|
|
[20] |
Benassi, A.; Doria, F.; Pirota, V. Int. J. Mol. Sci. 2020, 21, 8692.
doi: 10.3390/ijms21228692 |
[21] |
Oliveira, V. S.; Pimenteira, C.; da Silva-Alves, D. C.; Leal, L. L.; Neves-Filho, R. A.; Navarro, D. M.; Santos, G. K.; Dutra, K. A.; dos Anjos, J.V.; Soares, T. A. J. Bioorg. Med. Chem. 2013, 21, 6996.
doi: 10.1016/j.bmc.2013.09.020 |
[22] |
Xie, S. -S.; He, J. G.; Zhang, M.; Hou, S.; Zhang, B. J.; Ding, X. F.; Hu, Z.; Sun, R. F. Agrochemicals 2020, 59, 332. (in Chinese)
|
( 谢世爽, 贺建国, 张萌, 侯帅, 张北京, 丁晓帆, 胡展, 孙然锋, 农药, 2020, 59, 332.)
|
|
[23] |
Huang, T. -H.; Xu, H. Y.; Liu, M.; Hou, C. J.; Zhang, A. D. Chin. J. Org. Chem. 2011, 31, 891. (in Chinese)
|
( 黄统辉, 涂海洋, 刘名, 侯昌健, 张爱东, 有机化学, 2011, 31, 891.)
|
|
[24] |
Shi, J. -M.; Huo, J. Q.; Zhang, Z.; Zhang, J. L. Chin. J. Pesticide Sci. 2016, 18, 530. (in Chinese)
|
( 时佳妹, 霍静倩, 张哲, 张金林, 农药学学报, 2016, 18, 530.)
|
|
[25] |
Ranjith, K. R.; Perumal, S.; Menéndez, J. C.; Yogeeswari, P.; Sriram, D. J. Bioorg. Med. Chem. 2011, 19, 3444.
doi: 10.1016/j.bmc.2011.04.033 |
[26] |
Shetnev, A.; Baykov, S.; Kalinin, S.; Belova, A.; Sharoyko, V.; Rozhkov, A.; Zelenkov, L.; Tarasenko, M.; Sadykov, E.; Korsakov, M.; Krasavin, M. Int. J. Mol. Sci. 2019, 20, 1699.
doi: 10.3390/ijms20071699 |
[27] |
Cunha, F.; Nogueira, J.; de Aguiar, A. J. Braz. Chem. Soc. 2018, 29, 2405.
|
[28] |
Schiff, G. M.; Sherwood, J. R. J. Infect. Dis. 2000, 181, 20.
pmid: 10608746 |
[29] |
Bao, X. -P.; Lin, X. F.; Jian, J. Y.; Zhang, F.; Zhou, L. B. Chin. J. Org. Chem. 2013, 33, 995. (in Chinese)
|
( 鲍小平, 林选福, 蹇军友, 张峰, 邹林波, 有机化学, 2013, 33, 995.)
doi: 10.6023/cjoc201212009 |
|
[30] |
Wieja, A.; Winter, C.; Rosenbaum, C.; Kremzow-Graw, D.; Roehl, F.; Rheinheimer, J.; Poonoth, M.; Terteryan, V.; Haden, E.; Escribano Cuesta, A.; Achenbach, J. H.; Mentzel, T.; Wiebe, C. WO 2015185485, 2015
|
[Chem. Abstr. 2015, 164, 79331.]
|
|
[31] |
Brunet, S.; Desbordes, P.; Ducerf, S.; Dufoyr, J.; Goertz, A.; Gourgues, M.; Hilt, E.; Naud, S.; Rebstock, A.; Thomas, V.; Vernay, A.; Villalba, F.; Gortz, A. WO 2019155066, 2019
|
[Chem. Abstr. 2019, 179, 134523.]
|
|
[32] |
Quintero Palomar, M. A.; Terteryan-Seiser, V.; Grammenos, W.; Wiebe, C.; Montag, J.; Coquiller, M.; Neumann, T. WO 2019115511, 2019
|
[Chem. Abstr. 2019, 171, 112281.]
|
|
[33] |
Hoffman, T. J.; Stierli, D.; Pitterna, T.; Beaudegnies, R.; Rajan, R. WO 2019097054, 2019
|
[Chem. Abstr. 2019, 171, 14545.]
|
|
[34] |
Matsuzaki, Y.; Nakano, T.; Inoue, T. WO 2017110864, 2017
|
[Chem. Abstr. 2017, 167, 147212.]
|
|
[35] |
Wiebe, C.; Craig, I. R.; Grammenos, W.; Kretschmer, M.; Escribano Cuesta, A.; Terteryan-Seiser, V.; Quintero Palomar, M. A.; Fehr, M.; Mentzel, T.; Lohmann, J. K.; Grote, T.; Cambeis, E.; Mueller, B.; Winter, C. WO 2017081312, 2017
|
[Chem. Abstr. 2017, 166, 531364.]
|
|
[36] |
Hoffman, T. J.; Stierli, D.; Beaudegnies, R.; Pouliot, M. WO 2018055135, 2018
|
[Chem. Abstr. 2018, 168, 367054.]
|
|
[37] |
Bou Hamdan, F.; Stierli, D.; Jeanmart, S. A. M.; Godfrey, C. R. A.; Hoffman, T. J.; Beaudegnies, R.; Pouliot, M. WO 2017174158, 2017
|
[Chem. Abstr. 2017, 167, 482222.]
|
|
[38] |
Wiebe, C.; Kretschmer, M.; Grammenos, W.; Escribano Cuesta, A.; Quintero Palomar, M. A.; Graig, I. R.; Cambeis, E.; Grote, T.; Fehr, M.; Mentzel, T.; Mueller, B.; Winter, C.; Terteryan-Seiser, V.; Lohmann, J. K. WO 2017081309, 2017
|
[Chem. Abstr. 2017, 166, 547081 ]
|
|
[39] |
Hoffman, T. J.; Stierli, D.; Beaudegnies, R.; Pouliot, M. WO 2018015449, 2018
|
[Chem. Abstr. 2018, 168, 199990.]
|
|
[40] |
Hoffman, T. J.; Stierli, D.; Beaudegnies, R.; Pouliot, M. WO 2018015458, 2018
|
[Chem. Abstr. 2018, 168, 189739.]
|
|
[41] |
Vitaku, E.; Smith, D. T.; Njadarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
[42] |
Wu, F. R. M.S. Thesis, Northwest A&F University, Yangling, 2022. (in Chinese)
|
( 武复冉, 硕士论文, 西北农林科技大学, 杨凌, 2022.)
|
|
[43] |
Peng, J. Ph.D. Dissertation, Central China Normal University, Wuhan, 2014. (in Chinese)
|
( 彭吉, 博士论文, 华中师范大学, 武汉, 2014.)
|
|
[44] |
Yang, H. Z. Pesticide Molecular Design, Science Press, Beijing, 2003, p. 27. (in Chinese)
|
( 杨华铮, 农药分子设计, 科学出版社, 北京, 2003, p. 27.)
|
|
[45] |
Xie, L. R. Ph.D. Dissertation, Chinese Academy of Agricultural Sciences, Beijing, 2013.
|
( 谢如良, 博士论文, 中国农业科学院, 北京, 2013.)
|
|
[46] |
Wiebe, C.; Kretschmer, M.; Grammenos, W.; Escribano Cuesta, A.; Quintero Palomar, M. A.; Graig, I. R.; Cambeis, E.; Grote, T.; Fehr, M.; Mentzel, T.; Mueller, B.; Winter, C.; Terteryan-Seiser, V.; Lohmann, J. K. WO 2017076739, 2017
|
[Chem. Abstr. 2017, 166, 536068.]
|
|
[47] |
Wang, F.; Liu, D. D.; Zhu, C.; Zhang, J.; Zhang, L. X. Agrochemicals. 2022, 61, 326. (in Chinese)
|
( 王锋, 刘东东, 朱晨, 张静, 张立新, 农药, 2022, 61, 326.)
|
[1] | 邹发凯, 王能中, 姚辉, 王慧, 刘明国, 黄年玉. 1β-/3R-芳基硫代糖的区域与立体选择性合成[J]. 有机化学, 2024, 44(2): 593-604. |
[2] | 吴思敏, 唐嘉欣, 周于佳, 徐学涛, 张昊星, 王少华. 2β-Acetoxyferruginol去醋酸基骨架衍生物抑制α-葡萄糖苷酶活性研究[J]. 有机化学, 2024, 44(2): 613-621. |
[3] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[4] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[5] | 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 全连续流反应技术在药物合成中的新进展(2019~2022)[J]. 有机化学, 2024, 44(2): 378-397. |
[6] | 李鹏辉, 谢青洋, 万福贤, 张元红, 姜林. 含环丙基的新型取代嘧啶-5-甲酰胺的合成及杀菌活性研究[J]. 有机化学, 2024, 44(2): 650-656. |
[7] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[8] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[9] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[10] | 陈珊, 陈志林, 胡琼, 蒙艳双, 黄悦, 陶萍芳, 卢丽如, 黄国保. 含双硫脲基团分子钳在非极性溶剂中识别中性分子[J]. 有机化学, 2024, 44(1): 277-281. |
[11] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[12] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[13] | 马翠云, 罗海澜, 张福华, 郭丹, 陈树兴, 王飞. 3-Pyrrolyl BODIPY的绿色生物合成、光物理性质及应用研究[J]. 有机化学, 2024, 44(1): 216-223. |
[14] | 王博珍, 张婕, 粘春惠, 金茗茗, 孔苗苗, 李物兰, 何文斐, 吴建章. 含有3,4-二氯苯基的酰胺类化合物的合成及抗肿瘤活性研究[J]. 有机化学, 2024, 44(1): 232-241. |
[15] | 丁卫忠, 张炳文, 薛彦青, 林雨琦, 汤志军, 王婧, 杨文超, 王晓峰, 刘文. 禾谷镰刀菌中一个新的聚酮类化合物[J]. 有机化学, 2023, 43(9): 3319-3322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||