有机化学 ›› 2023, Vol. 43 ›› Issue (5): 1706-1712.DOI: 10.6023/cjoc202303025 上一篇 下一篇
所属专题: 有机硼化学专辑
综述与进展
陈志豪a, 范奇b, 尹标林b, 李清江a, 王洪根a,*()
收稿日期:
2023-03-17
修回日期:
2023-04-14
发布日期:
2023-04-26
通讯作者:
王洪根
基金资助:
Zhihao Chena, Qi Fanb, Biaolin Yinb, Qingjiang Lia, Honggen Wanga()
Received:
2023-03-17
Revised:
2023-04-14
Published:
2023-04-26
Contact:
Honggen Wang
Supported by:
文章分享
α-硼取代羰基类化合物传统被认为是热力学上不稳定的化合物, 容易发生1,3-硼迁移. 近年来, 随着对sp3杂化的硼或是四配位硼基团的研究深入, 合成稳定且可分离的α-硼取代羰基类化合物的方法被逐渐发展. 这些方法包括利用重氮酸酯、硫叶立德等卡宾前体对硼烷的插入反应, α,β-不饱和羰基类化合物的自由基硼氢化反应, 以及含硼化合物的后阶段结构修饰反应等. 根据不同的反应类型, 对近年来合成α-硼取代羰基类化合物的反应进行了综述, 并对现有的挑战及未来的研究方向进行了讨论.
陈志豪, 范奇, 尹标林, 李清江, 王洪根. α-硼取代羰基类化合物的合成进展[J]. 有机化学, 2023, 43(5): 1706-1712.
Zhihao Chen, Qi Fan, Biaolin Yin, Qingjiang Li, Honggen Wang. Progress in the Syntheses of α-Boryl Carbonyl Compounds[J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1706-1712.
[1] |
(a) Matteson, D. S. J. Am. Chem. Soc. 1960, 82(16), 4228.
doi: 10.1021/ja01501a029 |
(b) Matteson, D. S.; Mah, R. W. H. J. Org. Chem. 1963, 28(9), 2171.
doi: 10.1021/jo01044a003 |
|
[2] |
(a) Product Subclass 29: α-Boryl Carbonyl Compounds. In Category 1, Organometallics, Georg Thieme Verlag K. G., Stuttgart, 2005, Vol. 6.
|
(b) Dembitsky, V. M.; Tolstikov, G. A.; Srebnik, M. Eurasian Chem.-Technol. J. 2002, 4, 87.
doi: 10.18321/ectj522 |
|
[3] |
Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135(38), 14094.
doi: 10.1021/ja408306a |
[4] |
Drikermann, D.; Mößel, R. S.; Al-Jammal, W. K.; Vilotijevic, I. Org. Lett. 2020, 22(3), 1091.
doi: 10.1021/acs.orglett.9b04619 pmid: 31967841 |
[5] |
Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135(32), 12076.
doi: 10.1021/ja4056245 |
[6] |
Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137(16), 5268.
doi: 10.1021/jacs.5b00892 |
[7] |
(a) Loskutova, N. L.; Shvydkiy, N. V.; Nelyubina, Y. V.; Perekalin, D. S. J. Organomet. Chem. 2018, 867, 86.
doi: 10.1016/j.jorganchem.2017.08.010 |
(b) Liu, B.; Xu, M.-H. Chin. J. Chem. 2021, 39(7), 1911.
doi: 10.1002/cjoc.v39.7 |
|
(c) Sun, Y.-T.; Rao, X.; Xu, W.; Xu, M.-H. Org. Chem. Front. 2022, 9(13), 3467.
doi: 10.1039/D2QO00164K |
|
(d) Wang, T.-Y.; Chen, X.-X.; Zhu, D.-X.; Chung, L. W.; Xu, M.-H. Angew. Chem. Int. Ed. 2022, 61(34), e202207008.
|
|
(e) Zhu, D.-X.; Xia, H.; Liu, J.-G.; Chung, L. W.; Xu, M.-H. J. Am. Chem. Soc. 2021, 143(6), 2608.
doi: 10.1021/jacs.0c13191 |
|
(f) Chen, D.; Zhu, D.-X.; Xu, M.-H. J. Am. Chem. Soc. 2016, 138(5), 1498.
doi: 10.1021/jacs.5b12960 |
|
[8] |
Allen, T. H.; Kawamoto, T.; Gardner, S.; Geib, S. J.; Curran, D. P. Org. Lett. 2017, 19(13), 3680.
doi: 10.1021/acs.orglett.7b01777 |
[9] |
(a) Kan, S. B. J.; Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F. H. Nature 2017, 552(7683), 132.
doi: 10.1038/nature24996 pmid: 30930550 |
(b) Chen, K.; Huang, X.; Zhang, S.-Q.; Zhou, A. Z.; Kan, S. B. J.; Hong, X.; Arnold, F. H. Synlett 2019, 30(4), 378.
doi: 10.1055/s-0037-1611662 pmid: 30930550 |
|
(c) Huang, X.; Garcia-Borràs, M.; Miao, K.; Kan, S. B. J.; Zutshi, A.; Houk, K. N.; Arnold, F. H. ACS Cent. Sci. 2019, 5(2), 270.
doi: 10.1021/acscentsci.8b00679 pmid: 30930550 |
|
[10] |
(a) Li, J.; He, H.; Huang, M.; Chen, Y.; Luo, Y.; Yan, K.; Wang, Q.; Wu, Y. Org. Lett. 2019, 21(22), 9005.
doi: 10.1021/acs.orglett.9b03410 |
(b) Zhang, S.-S.; Xie, H.; Shu, B.; Che, T.; Wang, X.-T.; Peng, D.; Yang, F.; Zhang, L. Chem. Commun. 2020, 56(3), 423.
doi: 10.1039/C9CC08795H |
|
[11] |
Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8(8), 7351.
doi: 10.1021/acscatal.8b02052 |
[12] |
Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Nat. Commun. 2019, 10(1), 1934.
doi: 10.1038/s41467-019-09825-3 |
[13] |
Zhang, Y.; Liao, Y.; Liu, P.; Ran, Y.; Liu, X. Org. Biomol. Chem. 2022, 20(17), 3550.
doi: 10.1039/D2OB00076H |
[14] |
Li, G.; Huang, G.; Sun, R.; Curran, D. P.; Dai, W. Org. Lett. 2021, 23(11), 4353.
doi: 10.1021/acs.orglett.1c01270 |
[15] |
Dai, W.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2019, 141(31), 12355.
doi: 10.1021/jacs.9b05547 |
[16] |
Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F. Angew. Chem. Int. Ed. 2020, 59(31), 12876.
doi: 10.1002/anie.v59.31 |
[17] |
Chen, G.; Wang, L.; Liu, X.; Liu, P. Adv. Synth. Catal. 2020, 362(14), 2990.
doi: 10.1002/adsc.v362.14 |
[18] |
Liu, X.; Shen, Y.; Lu, C.; Jian, Y.; Xia, S.; Gao, Z.; Zheng, Y.; An, Y.; Wang, Y. Chem. Commun. 2022, 58(60), 8380.
doi: 10.1039/D2CC02846H |
[19] |
Miao, Y.-Q.; Li, X.-Y.; Pan, Q.-J.; Ma, Y.; Kang, J.-X.; Ma, Y.-N.; Liu, Z.; Chen, X. Green Chem. 2022, 24(18), 7113.
doi: 10.1039/D2GC02313J |
[20] |
Radcliffe, J. E.; Fasano, V.; Adams, R. W.; You, P.; Ingleson, M. J. Chem. Sci. 2019, 10(5), 1434.
doi: 10.1039/c8sc04305a pmid: 30809360 |
[21] |
Li, J.; Ballmer, S. G.; Gillis, E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M. E.; Lehmann, J. W.; Morehouse, G. F.; Burke, M. D. Science 2015, 347(6227), 1221.
doi: 10.1126/science.aaa5414 |
[22] |
Li, J.; Burke, M. D. J. Am. Chem. Soc. 2011, 133(35), 13774.
doi: 10.1021/ja205912y |
[23] |
He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133(35), 13770.
doi: 10.1021/ja205910d |
[24] |
Corless, V. B.; Holownia, A.; Foy, H.; Mendoza-Sanchez, R.; Adachi, S.; Dudding, T.; Yudin, A. K. Org. Lett. 2018, 20(17), 5300.
doi: 10.1021/acs.orglett.8b02234 |
[25] |
Lv, W.-X.; Zeng, Y.-F.; Li, Q.; Chen, Y.; Tan, D.-H.; Yang, L.; Wang, H. Angew. Chem. Int. Ed. 2016, 55(34), 10069.
doi: 10.1002/anie.201604898 |
[26] |
Ivon, Y. M.; Kuchkovska, Y. O.; Voitenko, Z. V.; Grygorenko, O. O. Eur. J. Org. Chem. 2020, 2020(23), 3367.
doi: 10.1002/ejoc.202000078 |
[27] |
Deloux, L.; Skrzypczak-Jankun, E.; Cheesman, B. V.; Srebnik, M.; Sabat, M. J. Am. Chem. Soc. 1994, 116(22), 10302.
doi: 10.1021/ja00101a061 |
[28] |
Albarghouti, G.; Rayyan, S. Org. Prep. Proced. Int. 2020, 52(1), 1.
doi: 10.1080/00304948.2019.1677998 |
[29] |
Hintermann, L.; Labonne, A. Synthesis 2007, 2007(8), 1121.
doi: 10.1055/s-2007-966002 |
[30] |
Chen, Z.-H.; Su, X.-X.; Li, Q.; Wu, J.-Q.; Ou, T.-M.; Wang, H. Org. Lett. 2023, 25(7), 1099.
doi: 10.1021/acs.orglett.2c04343 |
[1] | 夏登鹏, 罗锦昀, 何林, 蔡志华, 杜广芬. 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024, 44(2): 622-630. |
[2] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[3] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[4] | 蔡远林, 吕亚, 聂桂花, 金智超, 池永贵. 氮杂环卡宾催化合成氰基化合物的研究进展[J]. 有机化学, 2023, 43(9): 3135-3145. |
[5] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[6] | 许晓萍, 张翼飞, 莫小渝, 江俊. 铑催化3-重氮吲哚-2-亚胺与吡唑啉酮的C—H官能团化反应制备3-吡唑基吲哚[J]. 有机化学, 2023, 43(7): 2519-2527. |
[7] | 马佳敏, 李姣兄, 孟千森, 曾祥华. 炔烃的自由基砜基化反应研究进展[J]. 有机化学, 2023, 43(6): 2040-2052. |
[8] | 杨亮茹, 郭梦丽, 袁金伟, 王佳美, 夏宇婷, 肖咏梅, 毛璞. 钳形氮杂环卡宾金属络合物的研究进展[J]. 有机化学, 2023, 43(6): 2002-2025. |
[9] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[10] | 秦玉承, 徐良轩, 徐佳能, 刘超. 1,2-迁移促进的苄基季铵盐硼化反应研究[J]. 有机化学, 2023, 43(5): 1868-1874. |
[11] | 吕敏, 杨爱梅, 张昱, 孙建婷, 魏邦国. Fe(OTf)3催化含有N,O-缩醛结构硼酸酯的合成研究[J]. 有机化学, 2023, 43(5): 1777-1785. |
[12] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[13] | 刘育园, 雷雅钦, 杨文, 赵万祥. 钴催化烯胺远程硼氢化[J]. 有机化学, 2023, 43(5): 1761-1771. |
[14] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[15] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||