有机化学 ›› 2023, Vol. 43 ›› Issue (10): 3580-3589.DOI: 10.6023/cjoc202303030 上一篇 下一篇
所属专题: 有机硅化学专辑-2023
综述与进展
收稿日期:
2023-03-21
修回日期:
2023-04-20
发布日期:
2023-05-15
基金资助:
Guangqing Guoa, Zhong Liana,b()
Received:
2023-03-21
Revised:
2023-04-20
Published:
2023-05-15
Contact:
*E-mail: Supported by:
文章分享
羧酸在有机体基本生命过程中起着非常重要的作用, 同时在有机合成化学领域也是一种功能强大的合成砌块. 因此, 无论是天然存在还是人工合成的羧酸都已经从多个方面被广泛研究. 硅基羧酸, 作为羧酸的类似物, 因其独特的理化性质和潜在的反应性吸引了化学家们的关注. 综述了硅基羧酸在插羰偶联反应、硅自由基反应以及酯化反应中的应用. 硅基羧酸作为硅自由基前体。
郭广青, 练仲. 硅基羧酸在有机合成中的应用进展[J]. 有机化学, 2023, 43(10): 3580-3589.
Guangqing Guo, Zhong Lian. Application Progress of Silyl Carboxylic Acid in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3580-3589.
[1] |
Li L.; Wei Y.-L.; Xu L.-W. Synlett 2020, 31, 21.
doi: 10.1055/s-0039-1691496 |
[2] |
Andrus M. B.; Liu J.; Meredith E. L. Tetrahedron Lett. 2003, 44, 4819.
doi: 10.1016/S0040-4039(03)01131-6 |
[3] |
Liu K. M.; Zhang R.; Duan X.-F. Org. Biomol. Chem. 2016, 14, 1593.
doi: 10.1039/C5OB02496J |
[4] |
Wang Y.-F.; Pan J.; Dong J.-J.; Yu C.-X.; Li T.-J.; Wang X.-S.; Shen S.; Yao C.-S. J. Org. Chem. 2017, 82, 1790.
doi: 10.1021/acs.joc.6b02444 |
[5] |
Shimizu M.; Hirano K.; Satoh T.; Miura M. J. Org. Chem. 2009, 74, 3478.
doi: 10.1021/jo900396z pmid: 19388716 |
[6] |
Ruso J. S.; Rajendiran N.; Kumaran R. S. Tetrahedron Lett. 2014, 55, 2345.
doi: 10.1016/j.tetlet.2014.02.079 |
[7] |
Wooley K. L.; Fréchet J. M.; Hawker C. J. Polymer 1994, 35, 4489.
doi: 10.1016/0032-3861(94)90793-5 |
[8] |
Akagawa K.; Kudo K. Chem. Commun. 2017, 53, 8645.
doi: 10.1039/C7CC04033D |
[9] |
Benkeser R. A.; Severson R. G. J. Am. Chem. Soc. 1951, 73, 1424.
doi: 10.1021/ja01148a007 |
[10] |
Friis S. D.; Taaning R. H.; Lindhardt A. T.; Skrydstrup T. J. Am. Chem. Soc. 2011, 133, 18114.
doi: 10.1021/ja208652n pmid: 22014278 |
[11] |
Hernández D.; Mose R.; Skrydstrup T. Org. Lett. 2011, 13, 732-735.
doi: 10.1021/ol102968g pmid: 21247139 |
[12] |
Markovič M.; Lopatka P.; Koóš P.; Gracza T. Org. Lett. 2015, 17, 5618.
doi: 10.1021/acs.orglett.5b02840 pmid: 26555577 |
[13] |
Mondal K.; Halder P.; Gopalan G.; Sasikumar P.; Radhakrishnan K. V.; Das P. Org. Biomol. Chem. 2019, 17, 5212.
doi: 10.1039/C9OB00886A |
[14] |
Jafarpour F.; Rashidi-Ranjbar P.; Kashani A. O. J. Org. Chem. 2011, 76, 21282.
|
[15] |
Gehrtz P. H.; Hirschbeck V.; Fleischer I. Chem. Commun. 2015, 51, 12574.
doi: 10.1039/C5CC05012J |
[16] |
Friis S. D.; Anders T. L.; Skrydstrup T. Acc. Chem. Res. 2016, 49, 594.
doi: 10.1021/acs.accounts.5b00471 |
[17] |
Cao J.; Zheng Z.-J.; Xu Z.; Xu L.-W. Coord. Chem. Rev. 2017, 336, 43.
doi: 10.1016/j.ccr.2017.01.005 |
[18] |
Gilman H.; Brook A. G. J. Am. Chem. Soc. 1955, 77, 2322.
doi: 10.1021/ja01613a088 |
[19] |
Brook A. G. Acc. Chem. Res. 1974, 7, 77.
doi: 10.1021/ar50075a003 |
[20] |
Friis S. D.; Anders T. L.; Skrydstrup T. Org. Lett. 2013, 15, 1378.
doi: 10.1021/ol4003465 pmid: 23441830 |
[21] |
Friis S. D.; Skrydstrup T.; Buchwald S. L. Org. Lett. 2014, 16, 4296.
doi: 10.1021/ol502014b pmid: 25090373 |
[22] |
Lian Z.; Friis S. D.; Anders T. L.; Skrydstrup T. Synlett 2014, 25, 1241.
doi: 10.1055/s-00000083 |
[23] |
Makarov I. S.; Kuwahara T.; Jusseau X.; Ryu I.; Anders T. L.; Skrydstrup T. J. Am. Chem. Soc. 2015, 137, 14043.
doi: 10.1021/jacs.5b09342 pmid: 26493709 |
[24] |
Laursen S. R.; Jensen M. T.; Lindhardt A. T.; Jacobsen M. F.; Skrydstrup T. Eur. J. Org. Chem. 2016, 2016, 1881.
doi: 10.1002/ejoc.v2016.10 |
[25] |
Skogh A.; Friis S. D.; Skrydstrup T.; Sandström A. Org. Lett. 2017, 19, 2873.
doi: 10.1021/acs.orglett.7b01068 pmid: 28498670 |
[26] |
Neumann K. T.; Donslund A. S.; Andersen T. L.; Nielsen D. U.; Skrydstrup T. Chem.-Eur. J. 2018, 24, 14946.
doi: 10.1002/chem.v24.56 |
[27] |
Pedersen S. K.; Gudmundsson H. G.; Nielsen D. U.; Donslund B. S.; Hammershøj H. C. D.; Daasbjerg K.; Skrydstrup T. Nat. Catal. 2020, 3, 843.
doi: 10.1038/s41929-020-00510-z |
[28] |
Brennführer A.; Neumann H.; Beller M. Angew. Chem., Int. Ed. 2009, 48, 4114.
doi: 10.1002/anie.v48:23 |
[29] |
Martinelli J. R.; Clark T. P.; Watson D. A.; Munday R. H.; Buchwald S. L. Angew. Chem., Int. Ed. 2007, 46, 8460.
doi: 10.1002/anie.v46:44 |
[30] |
Munday R. H.; Martinelli J. R.; Buchwald S. L. J. Am. Chem. Soc. 2008, 130, 2754.
doi: 10.1021/ja711449e |
[31] |
Grigg R.; Mutton S. P. Tetrahedron. 2010, 66, 5515.
doi: 10.1016/j.tet.2010.03.090 |
[32] |
Friis S. D.; Skrydstrup T.; Buchwald S. L. Org. Lett. 2014, 16, 4296.
doi: 10.1021/ol502014b pmid: 25090373 |
[33] |
Xu T.; Alper H. J. Am. Chem. Soc. 2014, 136, 16970.
doi: 10.1021/ja508588b |
[34] |
Andersen T. L.; Friis S. D.; Audrain H.; Nordeman P.; Antoni G.; Skrydstrup T. J. Am. Chem. Soc. 2015, 137, 1548.
doi: 10.1021/ja511441u pmid: 25569730 |
[35] |
Cornilleau T.; Audrain H.; Guillemet A.; Hermange P.; Fouquet E. Org. Lett. 2015, 17, 354.
doi: 10.1021/ol503471e pmid: 25562588 |
[36] |
Cornilleau T.; Simonsen M.; Vang M.; Taib-Maamar N.; Dessolin J.; Audrain H.; Hermange P.; Fouquet E. Bioconjugate Chem. 2017, 28, 2887.
doi: 10.1021/acs.bioconjchem.7b00583 pmid: 29077399 |
[37] |
Tabey A.; Audrain H.; Fouquet E.; Hermange P. Chem. Commun. 2019, 55, 7587.
doi: 10.1039/C9CC03215K |
[38] |
Christine T.; Tabey A.; Cornilleau T.; Fouquet E.; Hermange P. Tetrahedron. 2019, 75, 130765.
doi: 10.1016/j.tet.2019.130765 |
[39] |
Cormier M., Tabey A., Christine T., Audrain H., Fouquet E., Hermange P. Dalton Trans. 2021, 50, 10608.
doi: 10.1039/d1dt01633d pmid: 34282814 |
[40] |
Li X.; Xu J. ; Kramer S.; Skrydstrup T.; Lian Z. Adv. Synth. Catal. 2020, 362, 4078.
doi: 10.1002/adsc.v362.19 |
[41] |
Li X.; Zhang X.-M.; Xiong B.-J.; Lian Z. J. Org. Chem. 2023, 88, 5226.
doi: 10.1021/acs.joc.2c02479 |
[42] |
Werkmeister S.; Junge K.; Wendt B.; Alberico E.; Jiao H.; Baumann W.; Junge H.; Gallou F.; Beller M. Angew. Chem., Int. Ed. 2014, 53, 8722.
doi: 10.1002/anie.v53.33 |
[43] |
Bornschein C.; Werkmeister S.; Wendt B.; Jiao H.; Alberico E.; Baumann W.; Junge H.; Junge K.; Beller M. Nat. Commun. 2014, 5, 4111.
doi: 10.1038/ncomms5111 pmid: 24969371 |
[44] |
Rezayee N. M.; Samblanet D. C.; Sanford M. S. ACS Catal. 2016, 6, 6377.
doi: 10.1021/acscatal.6b01454 |
[45] |
Alberico E.; Sponholz P.; Cordes C.; Nielsen M.; Drexler H.-J.; Baumann W.; Junge H.; Beller M. Angew. Chem., Int. Ed. 2013, 52, 14162.
doi: 10.1002/anie.v52.52 |
[46] |
Chakraborty S.; Brennessel W. W.; Jones W. D. J. Am. Chem. Soc. 2014, 136, 8564.
doi: 10.1021/ja504523b pmid: 24877556 |
[47] |
Anke F.; Han D.; Klahn M.; Spannenberg A.; Beweries T. Dalton Trans. 2017, 46, 6843.
doi: 10.1039/c7dt01487b pmid: 28504796 |
[48] |
Sun H.-W.; Ahrens A.; Kristensen K. S.; Gausas L.; Donslund S. B.; Skrydstrup T. Org. Process Res. Dev. 2021, 25, 2300.
doi: 10.1021/acs.oprd.1c00205 |
[49] |
Igawa K.; Kokan N.; Tomooka K. Angew. Chem., Int. Ed. 2010, 49, 728.
doi: 10.1002/anie.v49:4 |
[50] |
Liang J.-Y.; Shen S.-J.; Xu X.-H.; Fu Y.-L. Org. Lett. 2018, 20, 6627.
doi: 10.1021/acs.orglett.8b02464 |
[51] |
Zhao Z.-J; He B.-R.; Tang B.-Z. Chem. Sci. 2015, 6, 5347.
doi: 10.1039/C5SC01946J |
[52] |
Remond C.; Martin J.; Martinez F. Cavelier, Chem. Rev. 2016, 116, 11654.
doi: 10.1021/acs.chemrev.6b00122 |
[53] |
Chatgilialoglu C. Chem. Rev. 1995, 95, 1229.
doi: 10.1021/cr00037a005 |
[54] |
Xu N.-X; Li B.-X.; Wang C.; Uchiyama M. Angew. Chem., Int. Ed. 2020, 59, 10639.
doi: 10.1002/anie.v59.26 |
[1] | 安大列, 包志鹏, 吴小锋. 含碳氟类底物参与的羰基化反应研究进展[J]. 有机化学, 2023, 43(7): 2304-2312. |
[2] | 王鹏, 杨妲, 刘欢. 一氧化碳参与β-内酰胺化合物合成的研究进展[J]. 有机化学, 2021, 41(9): 3448-3458. |
[3] | 武泽臣, 程沧, 张扬会. 过渡金属催化的碳氢键与一氧化碳的反应[J]. 有机化学, 2021, 41(6): 2155-2174. |
[4] | 陈恩庆, 唐永和, 王蕾, 任江波, 林伟英. 基于硝基还原机理的一氧化碳荧光探针的开发及细胞成像研究[J]. 有机化学, 2021, 41(3): 1200-1206. |
[5] | 叶青青, 张梦帆, 刘耀宗, 杨震. 3-去羟基Phomonol的合成[J]. 有机化学, 2019, 39(9): 2671-2675. |
[6] | 魏超, 张平竹, 李小六. 检测一氧化碳分子荧光探针的研究进展[J]. 有机化学, 2019, 39(12): 3375-3383. |
[7] | 徐方宁, 韩维. 无过渡金属参与的羰基化反应进展[J]. 有机化学, 2018, 38(10): 2519-2533. |
[8] | 苏吕, 肖含兵, 苑雨萌, 张晓凤, 林深, 黄秋锋. 钯催化咖啡因C-H键直接烷氧基羰基化反应生成8-酯基咖啡因衍生物[J]. 有机化学, 2017, 37(3): 630-635. |
[9] | 周玲玲, 周亚青, 唐艳丽, 杨科武, 张雷, 高玲香, 张国防, 高子伟, 张伟强. 抑菌型Fischer卡宾类一氧化碳缓释分子[J]. 有机化学, 2016, 36(11): 2695-2703. |
[10] | 谢叶香, 李金恒, 尹笃林, 江焕峰. 超临界二氧化碳介质中钯催化炔烃羰基化反应[J]. 有机化学, 2004, 24(2): 169-172. |
[11] | 谢叶香,李金恒,尹笃林,江焕峰. 钯催化α-炔醇立体专一合成α-(Z)-氯亚甲基-β-内酯[J]. 有机化学, 2003, 23(11): 1241-1243. |
[12] | 薛燕,吴思忠,彭爱东,杨瑛,陆世维. 非对称取代脲的合成与应用[J]. 有机化学, 2002, 22(8): 529-535. |
[13] | 史济良,顾嘉. CW-CO2激光引发异丙醇反应[J]. 有机化学, 1989, 9(3): 247-249. |
[14] | 陈彰明,黄当睦,何玉莺,陈福星,郑作光. 改进的Gattermann-Koch反应[J]. 有机化学, 1988, 8(6): 537-539. |
[15] | 孔巍,廖世健. 蒽镁的某些化学反应[J]. 有机化学, 1986, 6(3): 207-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||