有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3246-3256.DOI: 10.6023/cjoc202302007 上一篇 下一篇
研究论文
收稿日期:
2023-02-09
修回日期:
2023-04-12
发布日期:
2023-05-23
基金资助:
Received:
2023-02-09
Revised:
2023-04-12
Published:
2023-05-23
Contact:
E-mail: Supported by:
文章分享
苯并咪唑(BI)结构广泛存在于多种生物活性化合物中, 在药物合成领域受到越来越多的关注. 薁类衍生物是一类可从药用植物中获得的天然产物, 具有抗炎、抗氧化及低毒等特点. 以薁类衍生物与BI为原料, 通过Buchwald- Hartwig偶联得到了14个含苯并咪唑结构的薁类衍生物, 并研究了其抗炎活性和构效关系. 结果表明, 这些化合物能有效抑制脂多糖(LPS)诱导的巨噬细胞中NO的产生, 具有比愈创木薁磺酸钠(GAS-Na)更好的抗炎活性. 其中有三个薁类衍生物具有低毒性和高抗炎效果, 酶联免疫吸附测定法(ELISA)表明其以浓度依赖性的方式抑制LPS诱导的肿瘤坏死因子α (TNF-α)和白细胞介素6 (IL-6)的释放. 研究表明1-愈创木薁-苯并咪唑(GABI-1)具有高抗炎活性(给药浓度为20 μmol/L时的NO抑制率为33.69%)和低细胞毒性, 有望成为新型抗炎药候选分子.
肖梦佳, 高希珂. 含苯并咪唑结构的薁类衍生物的设计合成及抗炎活性研究[J]. 有机化学, 2023, 43(9): 3246-3256.
Mengjia Xiao, Xike Gao. Design, Synthesis and Anti-inflammatory Activity of Azulene Derivatives Containing Benzimidazole Unit[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3246-3256.
Entry | Solvent | Catalyst | Ligand | Base | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1 | Toluene | Pd2(dba)3 | Davephos | NaOtBu | 110 | 49 |
2 | Toluene | Pd2(dba)3 | Xphos | NaOtBu | 110 | 80 |
3 | Toluene | Pd2(dba)3 | Sphos | NaOtBu | 110 | 80 |
4 | Toluene | Pd2(dba)3 | MetBu-Xphos | NaOtBu | 110 | 5 |
5 | Toluene | Pd2(dba)3 | tBu-Xphos | NaOtBu | 110 | 85 |
6 | Toluene | Pd(OAc)2 | tBu-Xphos | NaOtBu | 110 | 79 |
7 | Toluene | Pd(dppf)Cl2 | tBu-Xphos | NaOtBu | 110 | 74 |
8 | Toluene | Pd2(dba)3 | tBu-Xphos | K2CO3 | 110 | 24 |
9 | Toluene | Pd2(dba)3 | tBu-Xphos | Cs2CO3 | 110 | 67 |
10 | Toluene | Pd2(dba)3 | tBu-Xphos | K3PO4 | 110 | 30 |
11 | 1,4-Dioxane | Pd2(dba)3 | tBu-Xphos | NaOtBu | 110 | 83 |
12 | DMB | Pd2(dba)3 | tBu-Xphos | NaOtBu | 110 | 82 |
Entry | Solvent | Catalyst | Ligand | Base | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1 | Toluene | Pd2(dba)3 | Davephos | NaOtBu | 110 | 49 |
2 | Toluene | Pd2(dba)3 | Xphos | NaOtBu | 110 | 80 |
3 | Toluene | Pd2(dba)3 | Sphos | NaOtBu | 110 | 80 |
4 | Toluene | Pd2(dba)3 | MetBu-Xphos | NaOtBu | 110 | 5 |
5 | Toluene | Pd2(dba)3 | tBu-Xphos | NaOtBu | 110 | 85 |
6 | Toluene | Pd(OAc)2 | tBu-Xphos | NaOtBu | 110 | 79 |
7 | Toluene | Pd(dppf)Cl2 | tBu-Xphos | NaOtBu | 110 | 74 |
8 | Toluene | Pd2(dba)3 | tBu-Xphos | K2CO3 | 110 | 24 |
9 | Toluene | Pd2(dba)3 | tBu-Xphos | Cs2CO3 | 110 | 67 |
10 | Toluene | Pd2(dba)3 | tBu-Xphos | K3PO4 | 110 | 30 |
11 | 1,4-Dioxane | Pd2(dba)3 | tBu-Xphos | NaOtBu | 110 | 83 |
12 | DMB | Pd2(dba)3 | tBu-Xphos | NaOtBu | 110 | 82 |
[1] |
Coussens L. M.; Werb Z. Nature 2002, 420, 860.
doi: 10.1038/nature01322 |
[2] |
(a) Jin S. E.; Kim O. S.; Yoo S. R.; Seo C. S.; Kim Y.; Shin H. K.; Jeong S. J. BMC Complementary Altern. Med. 2016, 16, 219.
doi: 10.1186/s12906-016-1197-7 |
(b) Liu X. C.; Zheng L.; Li Q. F.; Liu Y.; Ruan X. C.; Hou W. Q.; Ding Y. Environ. Toxicol. Pharmacol. 2016, 48, 1.
doi: 10.1016/j.etap.2016.09.005 |
|
[3] |
Pan M.-H.; Chiou Y.-S.; Tsai M.-L.; Ho C.-T. J. Tradit. Complementary Med. 2011, 1, 8.
doi: 10.1016/S2225-4110(16)30052-9 |
[4] |
(a) Catalano M.; Roviello G.; Santi R.; Villari D.; Spatafora P.; Galli I. C.; Sessa F.; Conte F. L.; Mini E.; Cai T. M. S.; Nesi G. Int. J. Mol. Sci. 2023, 24.
pmid: 20455855 |
(b) Mantovani A. Curr. Mol. Med. 2010, 10, 369.
doi: 10.2174/156652410791316968 pmid: 20455855 |
|
[5] |
(a) Safayhi H.; Sabieraj J.; Sailer E. R.; Ammon H. P. T. Planta Med. 1994, 60, 410.
pmid: 7997466 |
(b) Ornano L.; Venditti A.; Ballero M.; Sanna C.; Quassinti L.; Bramucci M.; Lupidi G.; Papa F.; Vittori S.; Maggi F.; Bianco A. Chem. Biodiversity 2013, 10, 1464.
doi: 10.1002/cbdv.v10.8 pmid: 7997466 |
|
[6] |
Guarrera M.; Turbino L.; Rebora A. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 486.
pmid: 11763400 |
[7] |
Lobo V.; Patil A.; Phatak A.; Chandra N. Pharmacogn. Rev. 2010, 4, 118.
doi: 10.4103/0973-7847.70902 |
[8] |
Cao T. T.; Li Y.; Yang Z. Y.; Yuan M. X.; Li Y.; Yang H. J.; Feng Y. C.; Yin S. F. Chem. Biol. Drug Des. 2016, 88, 264.
doi: 10.1111/cbdd.2016.88.issue-2 |
[9] |
Zhang L. Y.; Yang F.; Shi W. Q.; Zhang P.; Li Y.; Yin S. F. Bioorg. Med. Chem. Lett. 2011, 21, 5722.
doi: 10.1016/j.bmcl.2011.08.018 |
[10] |
(a) Pratsinis H.; Haroutounian S. A. Nat. Prod. Rep. 2002, 16, 201.
|
(b) Zheng J. J.; Shao C. L.; Chen M.; Gan L. S.; Fang Y. C.; Wang X. H.; Wang C. Y. Mar. Drugs 2014, 12, 1569.
doi: 10.3390/md12031569 |
|
[11] |
Vitaku E.; Smith D. T.; Njardarson J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
[12] |
Mantovani A.; Pierotti M. A. Med. Chem. Res. 2016, 25, 173.
doi: 10.1007/s00044-015-1495-5 |
[13] |
(a) Caroff E.; Meyer E. A.; Aanismaa P.; Froidevaux S.; Keller M.; Piali L. J. Med. Chem. 2022, 65, 11533.
doi: 10.1021/acs.jmedchem.2c00676 |
(b) Veerasamy R.; Roy A.; Karunakaran R.; Rajak H. Pharmaceuticals 2021, 14, 663.
doi: 10.3390/ph14070663 |
|
(c) Can N. O.; Cevik U. A.; Saglik B. N.; Ozkay Y.; Atli O.; Baysal M.; Ozkay U. D.; Can O. D. Molecules 2017, 22.
|
|
[14] |
(a) Nishigaya Y.; Takase S.; Sumiya T.; Kikuzato K.; Sato T.; Niwa H.; Sato S.; Nakata A.; Sonoda T.; Hashimoto N.; Namie R.; Honma T.; Umehara T.; Shirouzu M.; Koyama H.; Yoshida M.; Ito A.; Shirai F. J. Med. Chem. 2023, 66, 4059.
doi: 10.1021/acs.jmedchem.2c02059 pmid: 36882960 |
(b) Chen Z. L.; Li J. Y.; Yang H.; He Y. L.; Shi Q. Y.; Chang Q.; Liu R. Q.; Huang X.; Li Y. X. Bioorg. Med. Chem. 2022, 66, 116784.
doi: 10.1016/j.bmc.2022.116784 pmid: 36882960 |
|
(c) Satija G.; Sharma B.; Madan A.; Iqubal A.; Shaquiquzzaman M.; Akhter M.; Parvez S.; Khan M. A.; Alam M. M. J. Heterocycl. Chem. 2022, 59, 22.
doi: 10.1002/jhet.v59.1 pmid: 36882960 |
|
[15] |
(a) Baron A.; Le Sann C.; Mann J. Bioorg. Med. Chem. 2022, 58, 116656.
doi: 10.1016/j.bmc.2022.116656 |
(b) Lungu L.; Blaja S.; Cucicova C.; Ciocarlan A.; Barba A.; Kulcitki V.; Shova S.; Vornicu N.; Geana E. I.; Mangalagiu I. I.; Aricu A. Molecules 2023, 28, 116656.
|
|
[16] |
(a) Sindhu G.; Kholiya R.; Kidwai S.; Singh P.; Singh R.; Rawat D. S. J. Biochem. Mol. Toxicol. 2022, 36, e23123.
doi: 10.1002/jbt.v36.9 |
(b) Bhaskar V.; Kumar S.; Nair A. S.; Rajappan K. P.; Sudevan S. T.; Parambi D. G. T.; Al-Sehemi A. G.; Zachariah S. M.; Pappachen L. K. Comb. Chem. High Throughput Screening 2023, 26, 668.
doi: 10.2174/1386207325666220415144511 |
|
[17] |
(a) Chen J. W.; Xu L. K.; Wang B. G.; Zhang D. N.; Zhao L. L.; Bei Z. C.; Song Y. B. Molecules 2023, 28, 1579.
doi: 10.3390/molecules28041579 pmid: 27412600 |
(b) Tonelli M.; Simone M.; Tasso B.; Novelli F.; Boido V.; Sparatore F.; Paglietti G.; Pricl S.; Giliberti G.; Blois S.; Ibba C.; Sanna G.; Loddo R.; La Colla P. Bioorg. Med. Chem. 2010, 18, 2937.
doi: 10.1016/j.bmc.2010.02.037 pmid: 27412600 |
|
(c) Vausselin T.; Seron K.; Lavie M.; Mesalam A. A.; Lemasson M.; Belouzard S.; Feneant L.; Danneels A.; Rouille Y.; Cocquerel L.; Foquet L.; Rosenberg A. R.; Wychowski C.; Meuleman P.; Melnyk P.; Dubuisson J. J. Virol. 2016, 90, 8422.
doi: 10.1128/JVI.00404-16 pmid: 27412600 |
|
[18] |
(a) Noor A.; Qazi N. G.; Nadeem H.; Khan A. U.; Paracha R. Z.; Ali F.; Saeed A. Chem. Cent. J. 2017, 11.
pmid: 30019937 |
(b) Radhamanalan R.; Alagumuthu M.; Nagaraju N. Future Med. Chem. 2018, 10, 1805.
doi: 10.4155/fmc-2017-0214 pmid: 30019937 |
|
[19] |
(a) Mambwe D.; Korkor C. M.; Mabhula A.; Ngqumba Z.; Cloete C.; Kumar M.; Barros P. L.; Leshabane M.; Coertzen D.; Taylor D.; Gibhard L.; Njoroge M.; Lawrence N.; Reader J.; Moreira D. R.; Birkholtz L. M.; Wittlin S.; Egan T. J.; Chibale K. J. Med. Chem. 2022, 65, 16695.
doi: 10.1021/acs.jmedchem.2c01516 pmid: 30608648 |
(b) Toro P.; Klahn A. H.; Pradines B.; Lahoz F.; Pascual A.; Biot C.; Arancibia R. Inorg. Chem. Commun. 2013, 35, 126.
doi: 10.1016/j.inoche.2013.06.019 pmid: 30608648 |
|
(c) Okombo J.; Brunschwig C.; Singh K.; Dziwornu G. A.; Barnard L.; Njoroge M.; Wittlin S.; Chibale K. ACS Infect. Dis. 2019, 5, 372.
doi: 10.1021/acsinfecdis.8b00279 pmid: 30608648 |
|
[20] |
Woolley D. W. J. Biol. Chem. 1944, 152, 225.
doi: 10.1016/S0021-9258(18)72045-0 |
[21] |
Sabat M.; VanRens J. C.; Laufersweiler M. J.; Brugel T. A.; Maier J.; Golebiowski A.; De B.; Easwaran V.; Hsieh L. C.; Walter R. L.; Mekel M. J.; Evdokimov A.; Janusz M. J. Bioorg. Med. Chem. Lett. 2006, 16, 5973.
pmid: 16997556 |
[22] |
Bamborough P.; Christopher J. A.; Cutler G. J.; Dickson M. C.; Mellor G. W.; Morey J. V.; Patel C. B.; Shewchuk L. M. Bioorg. Med. Chem. Lett. 2006, 16, 6236.
pmid: 16997559 |
[23] |
Buckley G. M.; Ceska T. A.; Fraser J. L.; Gowers L.; Groom C. R.; Higueruelo A. P.; Jenkins K.; Mack S. R.; Morgan T.; Parry D. M.; Pitt W. R.; Rausch O.; Richard M. D.; Sabin V. Bioorg. Med. Chem. Lett. 2008, 18, 3291.
doi: 10.1016/j.bmcl.2008.04.039 pmid: 18482836 |
[24] |
Xu Z. J.; Yang Z.; Liu Y. T.; Lu Y. X.; Chen K. X.; Zhu W. L. J. Chem. Inf. Model. 2014, 54, 69.
doi: 10.1021/ci400539q |
[25] |
(a) Nieto C. I.; Cabildo P.; Garcia M. A.; Claramunt R. M.; Alkorta I.; Elguero J. Beilstein J. Org. Chem. 2014, 10, 1620.
doi: 10.3762/bjoc.10.168 |
(b) Garcia M. A.; Claramunt R. M.; Solcan T.; Milata V.; Alkorta I.; Eguero J. Magn. Reson. Chem. 2009, 47, 100.
doi: 10.1002/mrc.v47:2 |
|
(c) Claramunt R. M.; Lopez C.; Alkorta I.; Elguero J.; Yang R.; Schulman S. Magn. Reson. Chem. 2004, 42, 712.
doi: 10.1002/(ISSN)1097-458X |
|
[26] |
García-Báez E. V.; Padilla-Martínez II; Cruz A.; Rosales- Hernández M. C. Molecules 2022, 27, 6268.
doi: 10.3390/molecules27196268 |
[27] |
(a) Limtrakult P.; Yodkeeree S.; Pitchakarn P.; Punfa W. Nutr. Res. Pract. 2016, 10, 251.
doi: 10.4162/nrp.2016.10.3.251 pmid: 7768008 |
(b) Chen L.; Teng H.; Fang T.; Xiao J. B. Phytomedicine 2016, 23, 846.
doi: 10.1016/j.phymed.2016.03.016 pmid: 7768008 |
|
(c) Moshage H.; Kok B.; Huizenga J. R.; Jansen P. L. M. Clin. Chem. 1995, 41, 892.
pmid: 7768008 |
[1] | 孙泽人, 翟冰新, 何光超, 沈慧, 陈琳雅, 张杉, 邹毅, 朱启华, 徐云根. 新型1,2,3-三氮唑类衍生物的合成及抗炎活性研究[J]. 有机化学, 2023, 43(6): 2143-2155. |
[2] | 余章昕, 宋鑫明, 姚远, 杨俊, 杨硕, 李小宝. 长叶暗罗中克罗烷型二萜及其抗炎作用[J]. 有机化学, 2023, 43(2): 751-755. |
[3] | 李蕾, 朱聪聪, 朱全刚, 陈中建, 高希珂. 愈创木薁衍生物的设计合成及其抗氧化、抗炎活性研究[J]. 有机化学, 2022, 42(9): 2906-2913. |
[4] | 林炳涵, 卓继斌, 林彩霞, 高勇, 袁耀锋. 碳硼烷基苯并咪唑鎓环蕃的合成及核苷酸识别性质研究[J]. 有机化学, 2022, 42(8): 2551-2558. |
[5] | 赵静, 金辄, 王润, 张新庚, 韩英妹, 胡春, 刘晓平, 张传明, 金丽萍. 2-[(吡啶-2-基甲基)硫基]-1H-苯并咪唑类化合物的设计、合成和抗癌活性研究[J]. 有机化学, 2022, 42(7): 2172-2183. |
[6] | 王玉斌, 郭成, 陶晟, 刘纪昌, 赵基钢, 刘宁, 代斌. 碱性调控的选择性: 通过N-烷基-N-(2-(吡啶-2-基氨基)苯基)甲酰胺合成苯并咪唑酮和苯二氮䓬类化合物[J]. 有机化学, 2022, 42(4): 1146-1162. |
[7] | 朱思玉, 霍新玉, 马芹, 陈伟, 张洁, 郭亮. β-咔啉-苯并咪唑偶联物的合成及抗肿瘤活性研究[J]. 有机化学, 2022, 42(4): 1129-1135. |
[8] | 田晓京, 范禛禛, 姜思, 李志伟, 李江胜, 张跃飞, 卢翠红, 刘卫东. 无金属催化的双C—H功能化N-氰基苯并咪唑合成苯并咪唑并[1,2-c]喹唑啉衍生物[J]. 有机化学, 2022, 42(11): 3684-3692. |
[9] | 郭钰钰, 陈祥杰, 李师伍, 蔡志华, 何林. 2-芳基乙烯苯并咪唑串联反应合成多取代二氢吡啶并[1,2-a]苯并咪唑衍生物[J]. 有机化学, 2021, 41(9): 3692-3700. |
[10] | 李丰兴, 卢昕, 刘旭, 苏路路, 李小六, 陈华. 苯并咪唑并氮杂糖的结构修饰及其β-葡萄糖苷酶抑制活性[J]. 有机化学, 2021, 41(9): 3643-3651. |
[11] | 李敏欣, 邹秋萍, 杜文绒, 高金春, 李艳平, 毛泽伟. Dorsmerunin A的全合成及其抗炎活性研究[J]. 有机化学, 2021, 41(8): 3292-3296. |
[12] | 刘旭, 苏路路, 周昭希, 牛丽萍, 高利刚, 琚欢欢, 李丰兴, 李小六, 陈华. 苯并咪唑并氮杂糖的设计、合成及其糖苷酶抑制活性[J]. 有机化学, 2021, 41(7): 2861-2874. |
[13] | 张亚辉, 吴文锦, 张可心, 黎双双, 郝文燕. 铜(I)催化邻炔基芳基异硫氰酸酯与(E)-2-(苄基氨基)乙酸酯串联双环化反应快速合成5H-苯并咪唑[5,1-b][1,3]噻嗪[J]. 有机化学, 2021, 41(5): 1982-1990. |
[14] | 林媚, 吴凡, 刘天惠, 陈志涛, 许秀枝, 柯方. 水相中可见光催化腈合成苯并咪唑衍生物[J]. 有机化学, 2020, 40(8): 2563-2569. |
[15] | 杨凯, 姚辰, 高娟娟, 陈思鸿, 郑雪洁, 邓璐璇, 张毓娜, 刘美娟, 汪朝阳. 稠杂环吡啶并[1,2-a]苯并咪唑类化合物的合成研究进展[J]. 有机化学, 2020, 40(12): 4168-4183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||