有机化学 ›› 2024, Vol. 44 ›› Issue (6): 1777-1785.DOI: 10.6023/cjoc202401021 上一篇    下一篇

综述与进展

四内酰胺大环的分子识别与应用研究进展

郭静, 李诗瑶, 姚欢*(), 杨留攀*(), 王力立*()   

  1. 南华大学药学院 湖南衡阳 421001
  • 收稿日期:2024-01-16 修回日期:2024-02-21 发布日期:2024-03-12
  • 基金资助:
    国家自然科学基金(22174059); 国家自然科学基金(22201128); 湖南省自然科学基金(2022JJ40363); 湖南省自然科学基金(2022JJ40365); 湖南省科技创新计划(2022RC1230)

Research Progress of Tetralactam Macrocycle-Based Molecular Recognition and Applications

Jing Guo, Shiyao Li, Huan Yao*(), Liupan Yang*(), Lili Wang*()   

  1. School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001
  • Received:2024-01-16 Revised:2024-02-21 Published:2024-03-12
  • Contact: * E-mail: yaoh@usc.edu.cn; yanglp@usc.edu.cn; wangll@usc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22174059); National Natural Science Foundation of China(22201128); Provincial Natural Science Foundation of Hunan(2022JJ40363); Provincial Natural Science Foundation of Hunan(2022JJ40365); Science and Technology Innovation Program of Hunan Province(2022RC1230)

分子识别在自然界中广泛存在, 是许多生物过程以及超分子化学的核心. 水的极性环境会显著削弱特定的非共价相互作用(如氢键), 因此利用人工大环主体在水相中进行分子识别具有挑战性. 四内酰胺大环是一类疏水空腔内部具有极性结合位点的人工大环主体, 通过模仿生物受体的识别特性实现了水中亲水分子的识别, 在疏水效应以及氢键的协同作用下可以实现药物分子、糖类、染料、有机污染物及疾病标志物等物质的选择性识别. 总结了近三十年来四内酰胺大环在分子识别与应用方面的研究进展, 尤其是在水相中的分子识别与应用研究, 希望为今后四内酰胺大环的发展提供参考.

关键词: 超分子化学, 四内酰胺大环, 分子识别, 氢键

Molecular recognition is ubiquitous in nature and plays a crucial role in numerous biological processes and supramolecular chemistry. Due to the significant weakening of specific non-covalent interactions (e.g., hydrogen bonding) by the polar environment of water, the use of artificial macrocyclic hosts for molecular identification in the water is challenging. Tetralactam macrocycles are artificial macrocyclic hosts with polar binding sites inside the hydrophobic cavity, which can realize the recognition of hydrophilic molecules in the water by mimicking the molecular recognition of bioreceptors. Through the synergistic effect of hydrophobic effect and hydrogen bonds, it can selectively recognize drug molecules, saccharides, dyes, organic pollutants, disease markers and other substances in the aqueous environment. The research advances of tetralactam macrocycles in molecular recognition and application over the last 30 years are summarized, with a particular emphasis on its molecular recognition and application in the water, hoping to provide a reference for the development of tetralactam macrocycles in the future.

Key words: supramolecular chemistry, tetralactam macrocycle, molecular recognition, hydrogen bond