有机化学 ›› 2024, Vol. 44 ›› Issue (9): 2933-2942.DOI: 10.6023/cjoc202401008 上一篇 下一篇
研究论文
黄真茹a, 金国顺a, 陈天煜a, 冯斌a, 史鑫康a, 陈敏方b, 华路生b, 徐清a,b,*()
收稿日期:
2024-01-11
修回日期:
2024-04-02
发布日期:
2024-04-30
通讯作者:
徐清
基金资助:
Zhenru Huanga, Guoshun Jina, Tianyu Chena, Bin Fenga, Xinkang Shia, Minfang Chenb, Lusheng Huab, Qing Xua,b()
Received:
2024-01-11
Revised:
2024-04-02
Published:
2024-04-30
Contact:
Qing Xu
Supported by:
文章分享
研究发现简单无机碱氢氧化铯是邻苯二胺与2-羟基-2-苯基苯乙酮有氧环化反应构建喹喔啉骨架的最佳催化剂, 即催化量氢氧化铯可在室温、空气的温和条件下催化反应高效进行. 本方法适用于一系列邻二胺和α-羟基酮类化合物, 底物范围较广. 由于不使用过渡金属催化剂, 且催化剂氢氧化铯具有很好的水溶性, 简单水洗即可将其从产物中除去, 因此产物没有铯及过渡金属残留. 此方法采用方便易得的空气为氧化剂、无需使用其它化学计量的氧化剂, 唯一副产物为水, 因而可为喹喔啉杂环衍生物的高效构建提供一种无过渡金属参与、温和高效、绿色实用的方法.
黄真茹, 金国顺, 陈天煜, 冯斌, 史鑫康, 陈敏方, 华路生, 徐清. 氢氧化铯催化温和有氧环化反应高效构建喹喔啉杂环衍生物[J]. 有机化学, 2024, 44(9): 2933-2942.
Zhenru Huang, Guoshun Jin, Tianyu Chen, Bin Feng, Xinkang Shi, Minfang Chen, Lusheng Hua, Qing Xu. Efficient Construction of Quinoxaline Derivatives by Cesium Hydroxide-Catalyzed Mild Aerobic Annulation Reaction[J]. Chinese Journal of Organic Chemistry, 2024, 44(9): 2933-2942.
Entry | Cat. (mol%) | Solvent (V/mL) | Yieldb/% |
---|---|---|---|
1 | NaOH (10) | Toluene (2) | 35 |
2 | KOH (10) | Toluene (2) | 42 |
3 | CsOH (10) | Toluene (2) | 61 |
4 | t-BuONa (10) | Toluene (2) | 25 |
5 | t-BuOK (10) | Toluene (2) | 39 |
6 | CsOH (10) | DMF (2) | 52 |
7 | CsOH (10) | DMSO (2) | 70 |
8 | CsOH (10) | 1,4-Dioxane (2) | 24 |
9 | CsOH (10) | CH3CN (2) | 47 |
10 | CsOH (15) | DMSO (2) | 78 |
11 | CsOH (20) | DMSO (2) | 78 |
12c | CsOH (15) | DMSO (2) | 75 |
13d | CsOH (15) | DMSO (2) | 77 |
14e | CsOH (15) | DMSO (2) | 53 |
15 | CsOH (15) | DMSO (1) | 57 |
16 | DMSO (2) | Trace | |
17 | CaO (15) | DMSO (2) | 51 |
Entry | Cat. (mol%) | Solvent (V/mL) | Yieldb/% |
---|---|---|---|
1 | NaOH (10) | Toluene (2) | 35 |
2 | KOH (10) | Toluene (2) | 42 |
3 | CsOH (10) | Toluene (2) | 61 |
4 | t-BuONa (10) | Toluene (2) | 25 |
5 | t-BuOK (10) | Toluene (2) | 39 |
6 | CsOH (10) | DMF (2) | 52 |
7 | CsOH (10) | DMSO (2) | 70 |
8 | CsOH (10) | 1,4-Dioxane (2) | 24 |
9 | CsOH (10) | CH3CN (2) | 47 |
10 | CsOH (15) | DMSO (2) | 78 |
11 | CsOH (20) | DMSO (2) | 78 |
12c | CsOH (15) | DMSO (2) | 75 |
13d | CsOH (15) | DMSO (2) | 77 |
14e | CsOH (15) | DMSO (2) | 53 |
15 | CsOH (15) | DMSO (1) | 57 |
16 | DMSO (2) | Trace | |
17 | CaO (15) | DMSO (2) | 51 |
[1] |
(a) Abdelfattah, M. S.; Kazufumi, T.; Ishibashi, M. J. Nat. Prod. 2010, 73, 1999.
doi: 10.1021/np100400t pmid: 23919549 |
(b) Barua, M. G.; Escalada, J. P.; Bregliani, M.; Pajares, A.; Criado, S. Redox Rep. 2017, 22, 282.
doi: 10.1080/13510002.2016.1240287 pmid: 23919549 |
|
(c) Aarthi, A.; Vikineswary, S.; Vengadesh, P. Int. J. Food Prop. 2016, 19, 1173.
pmid: 23919549 |
|
(d) Lalteur, G.; Oncuer, C.; Oger, R. Bull. OEPP 1981, 11, 331.
pmid: 23919549 |
|
(e) Qi, J. Y.; Li, T. H.; Chan, A. S. C. Bioorg. Med. Chem. Lett. 2003, 13, 3561.
pmid: 23919549 |
|
(f) Morales-Castellanos, J. J.; Ramírez-Hernández, K.; Gómez- Flores, N. S.; Rodas-Suárez, O. R.; Peralta-Cruz, J. Molecules 2012, 17, 5164.
doi: 10.3390/molecules17055164 pmid: 23919549 |
|
(g) Anand, S.; Devi K. R., S. J. Chem. Technol. Biotechnol. 2024, 99, 426.
pmid: 23919549 |
|
(h) Kong, L.; Meng, J.; Tian, W.; Liu, J.; Hu, X.; Jiang, Z. H.; Zhang, W.; Li, Y.; Bai, L. P. ACS Omega 2022, 7, 1380.
pmid: 23919549 |
|
(i) Harsha, K. B.; Rangappa, S.; Preetham, H. D.; Swaroop, T. R.; Gilandoust, M.; Rakesh, K. S.; Rangappa, K. S. ChemistrySelect 2018, 3, 5228.
pmid: 23919549 |
|
(j) Zhao, F.; Sun, T.; Wang, Y.; Zhan, Y.; Yang, W. J. Dyes Pigm. 2021, 196, 109763.
pmid: 23919549 |
|
(k) Cogo, J.; Cantizani, J.; Cotillo, I.; Sangi, D. P.; Corrêa, A. G.; Ueda-Nakamura, T.; Filho, B. P. D.; Martín, J. J.; Nakamura, C. V. Bioorg. Med. Chem. 2018, 26, 4065.
pmid: 23919549 |
|
(l) Tarpada, U. P.; Thummar, B. B.; Raval, D. K. Arabian J. Chem. 2017, 10, 2902.
pmid: 23919549 |
|
(m) Meka, G.; Chintakunta, R. Results Chem. 2023, 5, 100783.
pmid: 23919549 |
|
(n) Pery, N.; Ijaz, F.; Rizvi, N. B.; Munawar, M. A.; Shafiq, M. I. Pak. J. Zool. 2021, 53, 281.
pmid: 23919549 |
|
(o) Enyedy, I. J.; Wang, J.; Zaman, W. A.; Johnsonb, K. M.; Wang, S. Bioorg. Med. Chem. Lett. 2002, 12, 1775.
pmid: 23919549 |
|
(p) Cogo, J.; Kaplum, V.; Sangi, D. P.; Ueda-Nakamura, T.; Corrêa, A. G.; Nakamura, C. V. Eur. J. Med. Chem. 2015, 90, 107.
pmid: 23919549 |
|
(q) Kaplum, V.; Cogo, J.; Sangi, D. P.; Ueda-Nakamura, T.; Corrêa, A. G.; Nakamura, C. V. Antimicrob. Agents Chemother. 2016, 60, 3433.
pmid: 23919549 |
|
(r) You, L.; Cho, E. J.; Leavitt, J.; Ma, L. C.; Montelione, G. T.; Anslyn, E. V.; Krug, R. M.; Ellington, A.; Robertus, J. D. Bioorg. Med. Chem. Lett. 2011, 21, 3007.
pmid: 23919549 |
|
(s) Abdeen, S.; Salim, N.; Mammadova, N.; Summers, C. M.; Frankson, R.; Ambrose, A. J.; Anderson, G. G.; Schultz, P. G.; Horwich, A. L.; Chapman, E.; Johnson, S. M. Bioorg. Med. Chem. Lett. 2016, 26, 3127.
pmid: 23919549 |
|
(t) Zhang, N.; Yu, Z.; Yang, X.; Zhou, Y.; Tang, Q.; Hu, P.; Wang, J.; Zhang, S. L.; Wang, M. W.; He, Y. Eur. J. Med. Chem. 2018, 157, 37.
doi: S0223-5234(18)30626-3 pmid: 23919549 |
|
(u) Hameed, S.; Khan, K. M.; Taslimi, P.; Salar, U.; Taskin-Tok, T.; Kisa, D.; Saleem, F.; Solangi, M.; Ahmed, M. H. U.; Rani, K. Int. J. Biol. Macromol. 2022, 211, 653.
pmid: 23919549 |
|
(v) Suwanhom, P.; Saetang, J.; Khongkow, P.; Nualnoi, T.; Tipmanee, V.; Lomlim, L. Molecules 2021, 26, 4895
pmid: 23919549 |
|
(w) Bandyopadhyay, D.; Cruz, J.; Morales, L. D.; Arman, H. D.; Cuate, E.; Lee, Y. S.; Banik, B. K.; Kim, D. J. Future Med. Chem. 2013, 5, 1377.
doi: 10.4155/fmc.13.101 pmid: 23919549 |
|
[2] |
(a) Tardif, F.; Leroux, G. Weed Technol. 1991. 5, 525.
|
(b) Joy, M.; Abit, M.; Al-Khatib, K. Pestic. Biochem. Phys. 2013, 105, 24.
|
|
(c) Zeng, D.; Shi, H.; Li, B.; Wang, M.; Song, B. J. Agric. Food Chem. 2006, 54, 8682.
|
|
(d) Liu, X. H.; Yu, W.; Min, L. J.; Wedge, D. E.; Tan, C. X.; Weng, J. Q.; Wu, H. K. Cantrell, C. L.; Bajsa-Hirschel, J.; Hua, X. W.; Duke, S. O. J. Agric. Food Chem. 2020, 68, 7324.
|
|
[3] |
(a) Sonawane, N. D.; Rangnekar, D. W. J. Heterocycl. Chem. 2002, 39, 303.
pmid: 33662183 |
(b) Brien, D. O.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881.
pmid: 33662183 |
|
(c) Castro, P. P.; Zhao, G.; Masangkay, G. A.; Hernandez, C.; Gutierrez-Tunstad, L. M. Org. Lett. 2004, 6, 333.
pmid: 33662183 |
|
(d) Lindner, B. D.; Zhang, Y.; Höfle, S.; Berger, N.; Teusch, C.; Jesper, M.; Hardcastle, K. I.; Qian, X.; Lemmer, U.; Colsmann, A.; Bunz, U. H. F.; Hamburger, M. J. Mater. Chem. C 2013, 1, 5718.
pmid: 33662183 |
|
(e) Wang, Y.; Xu, B.; Sun, R.; Xu, Y. J.; Ge, J. F. J. Mater. Chem. B 2020, 8, 7466.
doi: 10.1039/d0tb01377c pmid: 33662183 |
|
(f) Jing, Y. M.; Wang, F. Z.; Zheng, Y. X.; Zuo, J. L. J. Mater. Chem. C 2017, 5, 3714.
pmid: 33662183 |
|
(g) Xu, K.; Li, Y. Y.; Si, Y.; He, Y. L.; Ma, J. B.; He, J.; Hou, H. W.; Li, K. J. Lumin. 2018, 204, 182.
pmid: 33662183 |
|
(h) Ouakki, M.; Galai, M.; Benzekri, Z.; Verma, C.; Ech-chihbi, E.; Kaya, S.; Boukhris, S.; Ebenso, E. E.; Touhami, M. E.; Cherkaoui, M. Colloids Surf., A 2021, 611, 125810.
pmid: 33662183 |
|
(i) Sun, L.; Jiang, X.; Yin, J. Prog. Org. Coat. 2010, 67, 225.
pmid: 33662183 |
|
(j) Amaya-García, F.; Caldera, M.; Koren, A.; Kubicek, S.; Menche, J.; Unterlass, M. M. ChemSusChem 2021, 14, 1853.
doi: 10.1002/cssc.202100433 pmid: 33662183 |
|
(k) Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc. 2015, 137, 10420.
pmid: 33662183 |
|
[4] |
(a) Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688.
pmid: 28240337 |
(b) Agarwal, M.; Verma, K.; Pathak, G.; Pathak, S.; Mathur, J.; Kumar, M. ChemistrySelect 2023, 8, e202301448.
pmid: 28240337 |
|
(c) Cui, Y.; Tang, X.-B.; Shao, C.-X.; Li, J.-T.; Sun, W.-H. Chin. J. Chem. 2005, 23, 589.
pmid: 28240337 |
|
(d) Chen, Y.; Li, K.; Zhao, M.; Li, Y.; Chen, B. Tetrahedron Lett. 2013, 54, 1627.
pmid: 28240337 |
|
(e) Gopalaiah, K.; Saini, A.; Chandrudu, S. N.; Rao, D. C.; Yadav, H.; Kumar, B. Org. Biomol. Chem. 2017, 15, 2259.
doi: 10.1039/c7ob00122c pmid: 28240337 |
|
(f) Martin, L. J.; Marzinzik, A. L.; Ley, S. V.; Baxendale, I. R. Org. Lett. 2011, 13, 320.
pmid: 28240337 |
|
(g) Chaubey, T. N.; Borpatra, P. J.; Pandey, S. K. Org. Lett. 2023, 25, 5329.
pmid: 28240337 |
|
[5] |
(a) Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183.
pmid: 31460374 |
(b) Tingoli, M.; Mazzella, M.; Panunzi, B.; Tuzi, A. Eur. J. Org. Chem. 2011, 399.
pmid: 31460374 |
|
(c) Kadam, H. K.; Khan, S.; Kunkalkar, R. A.; Tilve, S. G. Tetrahedron Lett. 2013, 54, 1003.
pmid: 31460374 |
|
(d) Rashidizadeh, A.; Ghafuri, H.; Zand, H. R. E.; Goodarzi, N. ACS Omega 2019, 4, 12544.
doi: 10.1021/acsomega.9b01635 pmid: 31460374 |
|
(e) Bachhav, H. M.; Bhagat, S. B.; Telvekar, V. N. Tetrahedron Lett. 2011, 52, 5697.
pmid: 31460374 |
|
[6] |
(a) Meshram, H. M.; Kumar, G. S.; Ramesh, P.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 2580.
|
(b) Wan, J. P.; Gan, S. F.; Wu, J. M.; Pan, Y. Green Chem. 2009, 11, 1633.
|
|
(c) Harsha, K. B. Rangappa, K. S. RSC Adv. 2016, 6, 57154.
|
|
[7] |
(a) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem. Commun. 2003, 2286.
|
(b) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788.
|
|
(c) Zhang, Z.; Xie, C.; Feng, L.; Ma, C. Synth. Commun. 2016, 46, 1507.
|
|
(d) Fan, L. Y.; Wei, L. Hua, W. J.; Li, X. X. Chin. Chem. Lett. 2014, 25, 1203.
|
|
(e) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusareb, S. R.; Pawara, R. P. Tetrahedron Lett. 2005, 46, 7183.
|
|
[8] |
(a) Rao, K. T. V.; Sai Prasad, P. S.; Lingaiah, N. J. Mol. Catal. A: Chem. 2009, 312, 65.
|
(b) Dang, G. H.; Vu, Y. T. H.; Dong, Q. A.; Le, D. T.; Truong, T.; Phan, N. T. S. Appl. Catal. A 2015, 491, 189.
|
|
(c) Tamalika, B.; Tridib, K. S.; Sampak, S. Catal. Sci. Technol. 2012, 2, 2216.
|
|
(d) Meng, X.; Bi, X.; Yu, C.; Chen, G.; Chen, B.; Jing, Z.; Zhao, P. Green Chem. 2018, 20, 4638.
|
|
(e) Godino-Ojer, M.; Morales-Torres, S.; Maldonado-Hódar, F. J.; Pérez-Mayoral, E. Catal. Today 2023, 423, 114014.
|
|
[9] |
(a) Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321.
|
(b) Choa, C. S.; Oh, S. G. J. Mol. Catal. A: Chem. 2007, 276, 205.
|
|
(d) Cho, C. S.; Ren, W. X. J. Organomet. Chem. 2009, 694, 3215.
|
|
[10] |
(a) Hara, T.; Takami, Y.; Ichikuni, N.; Shimazu, S. Chem. Lett. 2012, 41, 488.
|
(b) Jeena, V.; Robinson, R. S. Tetrahedron Lett. 2014, 55, 642.
|
|
(c) Kamal, A.; Babu, K. S.; Faazil, S.; Hussaini, S. M. A.; Shaik, A. B. RSC Adv. 2014, 4, 46369.
|
|
[11] |
(a) Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2002, 43, 3971.
|
(b) Nasar, M. K.; Kumar, R. R.; Perumal, S. Tetrahedron Lett. 2007, 48, 2155.
|
|
(c) Ibrahim, M.M.; Grau, D.; Hampel, F.; Tsogoeva, S. B. Eur. J. Org. Chem. 2014, 7, 1401.
|
|
[12] |
(a) Schmidt, B.; Krehl, S.; Hauke, S. J. Org. Chem. 2013, 78, 5427.
doi: 10.1021/jo4005684 pmid: 23641707 |
(b) Ma, J.; Zou, Q.; Yin, G.; Li, F. Tetrahedron Lett. 2023, 126, 154646.
pmid: 23641707 |
|
[13] |
(a) Wang, W.; Shen, Y.; Meng, X.; Zhao, M.; Chen, Y.; Chen, B. Org. Lett. 2011, 13, 4514.
doi: 10.1021/ol201664x pmid: 21805970 |
(b) Mousset, C.; Provot, O.; Hamze, A.; Bignon, J.; Brion, J.-D.; Alami, M. Tetrahedron 2008, 64, 4287.
pmid: 21805970 |
|
(c) Hazarika, D.; Phukan, P. Tetrahedron 2017, 73, 1374.
pmid: 21805970 |
|
(d) Das, A.; Thomas, K. R. J. Asian. J. Org. Chem. 2020, 9, 1820.
pmid: 21805970 |
|
(e) Li, L.; Liu, Z.; Hu, X. Adv. Synth. Catal. 2021, 363, 4272.
pmid: 21805970 |
|
[14] |
(a) Cho, C. S.; Oh, S. G. Tetrahedron Lett. 2006, 47, 5633.
|
(b) Shee, S.; Panja, D.; Kundu, S. J. Org. Chem. 2020, 85, 2775.
|
|
(c) Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Chem. Commun., 2018, 54, 6883.
|
|
(d) Zeng, P.; Li, X.; Li, L.; Liang, C.; Zhang, J.; Peng, T. J. Organomet. Chem. 2023, 993, 122713.
|
|
(e) Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N. N. ChemCatChem 2015, 7, 57.
|
|
[15] |
(a) Zhang, C.; Xu, Z.; Zhang, L.; Jiao. N. Tetrahedron 2012, 68, 5258.
|
(b) Cho, C. S.; Ren, W. X.; Shim, S. C. Tetrahedron Lett. 2007, 48, 4665.
|
|
(c) Nguyen, L. A.; Nguyen, T. T. T.; Ngo, Q. A.; Nguyen, T. B. Adv. Synth. Catal. 2022, 364, 2748.
|
|
[16] |
(a) Xu, Q.; Huang, X.; Yuan, J. J. Org. Chem. 2005, 70, 6948.
|
(b) Yu, L.; Wu, Y.; Chen, T.; Pan, Y.; Xu, Q. Org. Lett. 2013, 15, 144.
|
|
(c) Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. Green Chem. 2014, 16, 287.
|
|
(d) Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Catal. Lett. 2016, 146, 2139.
|
|
[17] |
(a) Shi, X.; Guo, J.; Liu, J.; Ye, M.; Xu, Q. Chem.-Eur. J. 2015, 21, 9988.
pmid: 30791215 |
(b) Yao, S.; Zhou, K. J.; Wang, J. B.; Cao, H. G.; Yu, L.; Wu, J. Z.; Qiu, P. H.; Xu, Q. Green Chem. 2017, 19, 2945.
pmid: 30791215 |
|
(c) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Cao, H.; Zhang, X.; Xu, Q. ChemSusChem 2019, 12, 3043.
doi: 10.1002/cssc.201900265 pmid: 30791215 |
|
(d) Wang, Q.; Zhu, B.; Zhang, X.; Shi, G.; Liu, J.; Xu, Q. Asian J. Org. Chem. 2022, 11, e202200056.
pmid: 30791215 |
|
(e) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18, 7079.
pmid: 30791215 |
|
(f) Wang, Q.; Zhang, X.; Han, F.; Liu, J.; Xu, Q. ChemSusChem 2021, 14, 2866.
pmid: 30791215 |
|
[18] |
(a) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33, 18 (in Chinese).
|
(徐清, 李强, 有机化学, 2013, 33, 18.)
doi: 10.6023/cjoc201208016 |
|
(b) Ma, X.; Su, C.; Xu, Q. Topics in Current Chemistry, Eds.: Guillena, G.; Ramón, D. J., Vol. 374:27, Springer, Berlin, Heidel- berg, 2016, pp. 1-74.
|
|
(c) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem. Int. Ed. 2014, 53, 225.
|
|
(d) Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354 , 2671.
|
|
(e) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355, 73.
|
|
(f) Zhang, E.; Tian, H.; Xu, S.; Yu, X.-C.; Xu, Q. Org. Lett. 2013, 15, 2704.
|
|
(g) Li, S.; Li, X.; Li, Q.; Yuan, Q.; Shi, X.; Xu, Q. Green Chem. 2015, 17, 3260.
|
|
(h) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774.
|
|
(i) Xu, Q.; Xie, H.; Zhang, E.-L.; Ma, X.; Chen, J.; Yu, X.-C.; Li, H. Green Chem. 2016, 18, 3940.
|
|
(j) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
|
|
(k) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L.-B. Green Chem. 2018, 20, 3408.
|
|
(l) Ou, W.; Xiang, X.-D.; Zou, R.; Xu, Q.; Loh, K. P.; Su, C.-L. Angew. Chem. Int. Ed. 2021, 60, 6357.
|
|
(m) Ma, X.; Zhu, Y.; Yu, J.; Yan, R.; Xie, X.; Huang, L.; Wang, Q.; Chang, X.; Xu, Q. Org. Chem. Front. 2022, 9, 3204.
|
|
(n) Li, X.; Li, S.; Li, Q.; Dong, X.; Li, Y.; Yu, X.; Xu, Q. Tetrahedron 2016, 72, 264.
|
|
(o) Chen, T.; Han, F.; Li, S.; Liu, J.; Chen, J.; Xu, Q. Chin. J. Org. Chem. 2022, 42, 2914 (in Chinese).
|
|
(陈天煜, 韩峰, 李双艳, 刘建平, 陈建辉, 徐清, 有机化学, 2022, 42, 2914.)
doi: 10.6023/cjoc202204043 |
|
(p) Liu, J.; Han, F.; Li, S.; Chen, T.; Chen, J.; Xu, Q. Chin. J. Org. Chem. 2024, 44, 573 (in Chinese).
|
|
(刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清, 有机化学, 2024, 44, 573.)
doi: 10.6023/cjoc202308011 |
|
[19] |
For similar findings from other groups: (a) Zhang, W.; Liu, M.; Wu, H.; Ding, J.; Cheng, J. Tetrahedron Lett. 2008, 49, 5336.
|
(b) Wang, X.; Wang, D. Z. Tetrahedron 2011, 67, 3406.
|
|
(c) Donthiri, R. R.; Patil, R. D.; Adimurthy, S. Eur. J. Org. Chem. 2012, 4457.
|
|
(d) Xu, J.; Zhuang, R.; Bao, L.; Tang, G.; Zhao, Y. Green Chem. 2012, 14, 2384.
|
|
[20] |
Meng, J. J.; Gao, M.; Lv, H.; Zhang, X, M. Org. Lett. 2015, 17, 1842.
|
[21] |
More, S. V.; Sastry, M. N. V.; Yao, C. F. Green Chem. 2006, 8, 91.
|
[22] |
Niknam, K.; Saberi, D.; Mohagheghnejad, M. Molecules 2009, 14, 1915.
|
[23] |
Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X. Green Chem. 2015, 17, 279.
|
[24] |
Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873.
|
[25] |
Sheng, J.; Wang, X.; Lin, X.; Yang, Z.; Cheng, G.; Cui, X. Org. Lett. 2016, 18, 1378.
|
[26] |
Nguyen, T. B.; Mac, D. H.; Tran, T. M. C.; Nguyen, B. N.; Cao, H. T. Org. Biomol. Chem. 2022, 20, 7226.
doi: 10.1039/d2ob01343f pmid: 36053547 |
[27] |
Kumbhar, A.; Kamble, S.; Barge, M.; Rashinkar, G.; Salunkhe, R. Tetrahedron Lett. 2012, 53, 2756.
|
[28] |
Fowler, F. W.; Chen, S. J. J. Org. Chem. 1971, 36, 4025.
|
[29] |
Ohta, A.; Inoue, A.; Watanabe, T. Heterocycles 1984, 22, 2317.
|
[30] |
Reddy, B. V. S.; Ramesh, K.; Yadav, J. S. Synlett 2011, 2, 169.
|
[31] |
Petrosyan, A.; Ehlers, P.; Reimann, S.; Ghochikyan, T. V.; Saghyan, A. S.; Spannenberg, A.; Lochbrunner, S.; Langer, P. Tetrahedron 2015, 71, 6803.
|
[32] |
Gulevskaya, A. V.; Tonkoglazova, D. I.; Guchunov, A. S.; Misharev, A. D. Eur. J. Org. Chem. 2019, 4879.
|
[33] |
Moshkina, T. N.; Nosova, E. V.; Lipunova, G. N.; Valova, M. S.; Charushin, V. N. Asian. J. Org. Chem. 2018, 7, 1080.
|
[34] |
Ogg, R. A. Jr.; Bergstrom, F. W. J. Am. Chem. Soc. 1931, 53, 1846.
|
[1] | 杜佳言, 刘俊涛, 刘桂霞, 黄正. 钴催化末端烯烃区域和立体选择性异构合成反式-2-烯烃[J]. 有机化学, 2024, 44(9): 2889-2897. |
[2] | 宣良明, 赵伟, 范润东, 严琼姣, 汪伟, 陈芬儿. 基于甘氨酸衍生物α-C(sp3)—H官能团化的催化体系研究进展[J]. 有机化学, 2024, 44(9): 2700-2721. |
[3] | 高宇珅, 高媛媛, 张安安, 李路, 耿巍芝, 张凤华, 李飞, 刘澜涛. BF3•OEt2介导2-炔基苯胺的分子内环化反应合成3-硫醚吲哚化合物[J]. 有机化学, 2024, 44(9): 2785-2795. |
[4] | 靳瑞文, 王连杰, 宋跃, 刘小培, 王俊伟, 李中贤. 基于成环策略构建苯并呋喃的合成研究[J]. 有机化学, 2024, 44(9): 2742-2759. |
[5] | 高晋彬, 陆颖琪, 张辉, 高利柱, 熊兴泉. 生物质基催化剂在CO2化学转化中的应用[J]. 有机化学, 2024, 44(9): 2732-2741. |
[6] | 李楠, 王雲生, 李振. 三苯胺-吩噻嗪衍生物掺杂聚合物的光诱导室温磷光[J]. 有机化学, 2024, 44(8): 2487-2494. |
[7] | 张惟, 李庚辰, 苏昊, 戴文博, 孙鹏, 石建兵, 佟斌, 蔡政旭, 董宇平. 基于主客体掺杂室温磷光材料的氧气传感材料[J]. 有机化学, 2024, 44(8): 2523-2529. |
[8] | 崔怡静, 朱天文, 张强, 袁望章. 共晶提升纯有机材料室温磷光余辉性能[J]. 有机化学, 2024, 44(8): 2588-2594. |
[9] | 李文雅, 王煜, 陈江琦, 史丹, 张良, 余小春, 王正军. 可见光催化不对称Minisci反应研究进展[J]. 有机化学, 2024, 44(7): 2110-2123. |
[10] | 王丽梅, 刘晓圆, 昝金成, 孙书涛, 刘磊, 李伟, 刘希功. 锰催化环丁醇开环的C—C键氟化反应[J]. 有机化学, 2024, 44(7): 2333-2340. |
[11] | 傅艳华, 徐畅, 张超, 王怡莎, 冯高峰. 可见光诱导铁催化氮杂环的羟甲基化[J]. 有机化学, 2024, 44(7): 2265-2273. |
[12] | 张书林, 张周, 孙萌. 银催化环丙烯酮与醇的C—C键断裂加成反应[J]. 有机化学, 2024, 44(7): 2233-2240. |
[13] | 刘雯娟, 陈品红. 钯催化1,6-烯炔的环化反应研究[J]. 有机化学, 2024, 44(7): 2077-2091. |
[14] | 赵明, 颜瑞, 陈虎. 氮杂环卡宾催化醛类化合物的极性反转[J]. 有机化学, 2024, 44(7): 2204-2215. |
[15] | 邢运新, 闫登鸿, 温顺, 卜洁, 沈坤. 镍催化1,6-烯炔与芳基卤化物的反式还原芳基化环化[J]. 有机化学, 2024, 44(6): 1938-1948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||